圆的周长教案汇编8篇
作为一名教职工,时常需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的圆的周长教案8篇,仅供参考,大家一起来看看吧。
圆的周长教案 篇1
教学内容
人教版《义务教育课程标准实验教科书数学》六年级上册
教学目标
1.使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。
2.使学生在活动中培养初步的动手操作能力和空间观念。
3.结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。
教学过程
一、 复习导入
师:这一节课我们来研究有关周长的问题。
出示正方形
师:看屏幕,认识吗?
师:这是一个(正方形)
师:谁来指一指它的周长
生上台指。
师完整指:正方形4条边的总长就是它的周长。
出示圆
师:继续看,这是。。。。
生:圆
师:圆 的周长你能指一指吗?
生上台指
师:我们一起来指一指! 从一点开始,绕一圈,回到这一点里结束。看清楚了吗?(出示动画)
师:围成圆一周曲线的长度就是圆 的周长
【板书:圆的周长】
二、感知化曲为直
1、师:2个图形,分别为1号和2号。(给图形标号。)
师:给你 一把直尺,(慢慢的拿出来)。让你通过测量得到它们的周长,【板书:量】你愿意测量几号?
师: 想想,用手势1 或者2 告诉老师……怎么想的?
……
师:对,正方形是由线段围成的,可以用直尺直接测量。
而围成圆的——是一条曲线【板书:曲】,直接量确实不太方便。
师:不过呢,老师今天就是要为难一下你们,要求用直尺直接量出圆的周 长,这可是要想办法的哦! 敢不敢挑战?
2、用直尺测量圆的'周长
(1)荧光圈
师:看,什么?(圆形的荧光圈) 怎样量 它的周长?
生:把接头拔下来,拉直了量。
师:像这样!断开,拉直测量!
把接头部分去掉,这一段的长就是荧光圈的周长。
这个方法很不错哦!
(2)飞镖盘
师:继续 挑战!第二样,什么?(圆形的飞镖盘)能拉直量吗?
怎么办呢?
生:用线绕。
课件演示:线贴紧圆绕一周,多余部分 去掉 或者做上记号,然后把线 拉直测量,这一段线的长就是圆的周长。
师:还有其他办法吗?
生:滚
圆的周长教案 篇2
教学目的:
1.让学生知道什么是圆的周长.
2.理解圆周率的意义.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的意义.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长.
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的.秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=πd
=3.14×1.95
=6.123
≈6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示“√”,错误的出示“×”)
(1)圆周率就是圆的周长除以它的直径所得的商. ( )
(2)圆的直径越大,圆周率越大. ( )
(3)圆的半径是3厘米,周长是9.42厘米. ( )
3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)
如果速度相同,两人同时出发,谁先回到出发地点?为什么?
小明的路线长:20×3.14+20×3.14
=62.8+62.8
=125.6(米)
爷爷的路线长:3.14×(20+20)
=3.14×40
=125.6(米)
两条路线一样长,两人应同时回到出发点.
4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.
结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.
小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.
圆的周长教案 篇3
教学内容:
教材62—63页。
教师准备:
课件
学生准备:
硬币、茶叶筒、易拉罐等实物
教学目标:
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.
2.培养学生的观察、比较、分析、综合及动手操作能力.
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.
4.结合圆周率的学习,对学生进行爱国主义教育.
教学重点:
推导并总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学过程:
一、创设情景,生成问题
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
二、探索交流,解决问题
(一)认识周长
1.小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.那小灰狗所跑的路程呢?圆的周长又指的.是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
(二)圆周长的测量方法
1、讨论方法:请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2、反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3、小结各种测量方法
4、创设冲突,体会测量局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
(三)探索圆的周长与直径的关系。
1、猜想:正方形的周长与它的边长有关,你认为圆的周长与什么有关?
2、自学提示
3、初步认识圆周率
①看了几组同学的测算结果,你有什么发现?
②虽然倍数不大一样,但周长大多是直径的几倍?
③小结:圆的周长总是直径的三倍多一些。
(四)认识圆周率,总结公式。
1、圆的周长与直径的比值叫做圆周率,用希腊字母π表示.
2、介绍祖冲之。(课件)
3、理解误差:看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
4、总结公式:如果用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
板书:C=πd 提问:圆的周长还可以怎样求?
板书:C=2πr 5、圆的周长分别是直径与半径的几倍?
(五)学习例1
学生独立解答后交流汇报,共同订正。
三、巩固应用,内化提高
1.课本64页做一做1、2题
2.判断
(1)圆周率就是圆的周长除以直径所得的商。( )
(2)圆的直径越长,圆周率越大。( )
(3)π=3.14 ( )
3.李伯伯菜园里有一个半径为3.5米的圆形水池。绕这个水池走一周,要走多少米?
四、回顾整理,反思提升
通过学习,你有什么收获?还有什么问题吗?
圆的周长教案 篇4
教学目标:
⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。
⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。
⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。
教学重点、难点
教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。
教学过程设计
一、创设情境,引发探究
⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。
⒉揭示课题
⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?
⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?
板书课题:圆的周长
二、人人参与,探究新知
(一)教具演示,直观感知,认识圆周长。
教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?
(二)理解圆周率的意义
活动一:测量圆的.周长
⒈教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。
然后各组分工同桌合作,量出圆片的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。
⒉用"几何画板"《小球的轨迹》演示形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?
⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
活动二:探究圆周长与直径的关系,认识圆周率。
⒈圆的周长与什么有关。
⑴启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?
⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?
得出结论:圆的周长与它的直径有关。
⒉圆的周长与直径有什么关系。
⑴学生动手测量,验证猜想。
学生分组实验,并记下它们的周长、直径,填入书中的表格里。
⑵观察数据,对比发现。
提问:观察一下,你发现了什么呢?
(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
⑶出示"几何画板"《周长与直径的关系》演示。
⑷比较数据,揭示关系。
正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。
⒊认识圆周率
⑴揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π
⑵介绍π的读写法
⑶指导阅读,了解中国人引以为自豪的历史。
提问:你知道了什么?
(三)推导圆的周长计算公式。
⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd
请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?
⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。
提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?
学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?
三、应用新知,解决问题
1、和自己的伙伴一起解答例1和做一做
2、说出这两题用哪个公式比较好?
四、实践应用,拓展创新。
⒈基础性练习:
(1)求下列各圆的周长(几何画板)
r=3厘米 d=4厘米
(2)、我们现在有办法求唐老鸭跑的路程吗?
⒉、判断
①圆的周长是直径的π倍。( )
②大圆的圆周率小于小圆圆周率。( )
3、提高练习
在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?
五、总结评价,体验成功
1、你学到了什么? 2、你是怎么学到的?
圆的周长教案 篇5
教学目标:
1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。
2、使学生理解和掌握圆周长公式,并能运用公式解决现实生活中的问题,培养学生的应用意识。
3、通过对圆周率有关数学史料的介绍,结合学生对其中数字的感知,使学生体验到数学家对真理的锲而不舍的追求精神和严谨的科学态度,以及中国古代科技的兴盛。
4、通过合作探究,使学生体验到实验对猜测的验证作用以及对问题的探索过程,并掌握学习方法,感受“转化”的数学思想。
教学重点:经历探索圆周长公式的过程
教学难点:理解圆周率的意义
教学用具:多媒体课件
学习用具:圆形学具、直尺、计算器、记录单
教学过程:
一、 情境导入
(课件:圆形喷水池图片)
师导语:同学们,你们看,这是一个圆形喷水池。设计师想在喷水池最外圈每间隔0.5米安装一盏地面灯。现在,设计师急切地想知道至少要准备多少盏地面灯就够用了。谁愿意帮助设计师解决这个问题?
师追问:喷水池外圈一圈的长度叫什么?
(圆的周长又如何计算呢?)
引出课题:看来,咱们要想帮助设计师,就要先学习“圆的周长”了。(板书课题:圆的周长)
二、 探究新知
1、引出定义:赶快拿出你手中的圆形纸片,指着它说说什么是圆的周长?同桌交流。(指名回答,教师板书:围成圆的曲线的长)
2、猜想:你能猜猜圆的周长可能与圆的哪部分有关系吗?会有什么样的关系呢?说说你为什么这样猜?(随着回答板书:圆的周长直径)
师导语:同学非常勇敢,积极大胆地进行了猜测,这是我们成功的第一步。但这仅仅是猜测,还不能确定为准确的结论,需要我们做个试验探索,验证一下大家的想法。
3、指导学习方法:那好,看学习要求。(课件)(指名读)
师提问:学习要求中提示我们要怎么做?(测量、填记录单、计算、找倍数)
交流测量方法:你准备用什么方法测量圆的周长,快跟大家说一说。
滚动法:在尺子上滚动圆,注意在圆上做个标记,正好滚动一周到标记的那一点就能测量出圆的周长了。
绕绳法:将线绳绕圆一周,再将线绳拉直,测量线绳的长度就是圆的周长。
师导语:下面,就请你选用你喜欢的测量方法,测量出你手中的圆的.周长和它的直径,并填好记录单,然后找到它们的倍数,得出结论。希望同学们在操作中将误差减少到最小。比一比哪个组合作得最愉快!开始合作!!!
4、小组合作:教师巡视合作学习情况,参与有困难的组,进行个别的指导。
5、反馈:请各组选一名代表汇报你们的学习情况,其他同学看大屏幕,观察数据特点,让我们共同总结出结论。(实物投影反馈信息,教师填表,学生观察。)
圆的周长
圆的直径
圆的周长是直径的几倍
(得数保留两位小数)
师提问:如果我继续填下去,会出现什么情况?
那就用字母代替吧。填(C d 三倍多一些)
6、介绍圆周率:经过大家共同努力,发现圆周长是直径的三倍多一些。这是一个固定的数,我们把这个固定的倍数叫做圆周率。用字母“π”来表示(板书:圆周率 π)指导读:π(pai)。圆周率就是圆的周长与直径的商,(圆的周长÷直径=圆周率 c÷d=π)它的值在3.1415926-3.1415927之间,是一个无限不循环小数。(板书:3.1415926-3.1415927)在小学阶段,我们计算时一般取两位小数,π≈3.14(板书)
7、介绍祖冲之:每当提到圆周率,人们会自然的想到一个人物——祖冲之。(课件)现在运用计算机可以将圆周率的值计算到小数点后上亿位。
8、推导圆周长公式:同学们,根据圆周长与直径的倍数关系,你能推导出圆周长公式吗?(板书:c=πd)
要想求圆的周长,必须告诉大家什么条件?(直径)
知道半径怎么样求圆的周长?(板书:c=2πr)
9、课堂小结:在全体同学的共同努力下,我们终于得到了圆周长的计算公式,接下来就要帮助设计师解决问题了。
10、解决实际问题:
(1)有了求圆周长公式,只要告诉你什么条件就能够帮助设计师计算出至少准备多少地面灯的问题了?
(2)你能算出人们围绕这个圆走一圈大约是多少米吗?(课件)
三、 巩固练习:
1、口算:在计算圆周长时,我们发现,3.14成为了我们的好朋友。既然这样,就请1——10也来和它交朋友吧!(课件)比比谁的口算能力强?
2、判断:你能根据今天所学知识进行判断吗?
3、解答实际问题:生活中处处有数学问题,你们知道自行车车轮转动一周大约是多少米吗?
4、同学们,你们看。这几位小朋友围坐在一起,正在商量着怎么样才能得到这个大树干的直径是多少米?你能帮他们解决这个问题吗?说说你解决问题的思路。
四、 谈学习收获:
圆的周长教案 篇6
教学目标:
⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题。
⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。
教学流程:
一、揭示课题
⑴猜测这节课的学习内容。
⑵揭示课题--圆的周长。
二、确定探索新知的方向。
⑴观察课前画在黑板上的两幅图。
分别指出正方形、圆形和正六边形的周长。
⑵沟通联系。
找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。
⑶比较周长的长短。
以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。
⑷确定探究方向。
量出圆的周长和直径,算出它们之间的`倍数。
⑸准备数据采集。
序号
周长(c)cm
直径(d)cm
周长是直径的几倍
三、合作探究新知。
⑴学生操作活动。
小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。
教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。
教师在分组活动中采集到的数据。(是后加的,时加的)
序号
周长(c)cm
直径(d)cm
周长是直径的几倍
1
15.5
5
3.10
2
8.9
2.9
3.07
3
14
4.3
3.26
4
7.6
2.5
3.04
5
8.9
2.7
3.30
⑵合理,得出公式,
看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。
⑶介绍祖冲之。
四、利用新知解决简单的数学问题。
⑴说出计算周长的算式。
⑵口答练习十八1~2。
⑶作业练习十八3~4。
圆的周长教案 篇7
教学内容:
义务教育课程标准实验教科书数学六年级上册第62~64页的内容。
教学目标:
1、知识与技能目标:使学生直观认识圆的周长,知道圆的周长的含义,通过对圆周长的测量方法和圆周率的探索、圆的周长计算公式的推导等教学活动,培养学生观察、猜测、分析、抽象、概括、动手操作的能力和解决简单的实际问题的能力。
2、过程与方法目标:通过摸一摸,动手操作,猜想验证等方法使学生亲历整个探寻知识的过程,从而掌握圆周长计算的由来和相关知识。
3、情感态度与价值观:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感,培养创新精神以及团结合作精神。
教学重难点:
教学重点:通过测量、计算、猜测、验证等过程,理解圆的周长计算公式的推导过程及其实践运用。
教学难点:理解圆周率的意义。
教具准备:圆形纸片、直尺、计算器、记录单
教学过程:
一 课始预习,初步了解
看书完成前置作业:
1、什么叫圆的周长?并举例说明。圆的周长可以怎样测量?
2、什么叫圆的半径和直径?二者之间有什么关系?
3、你认为圆的周长的
大小跟什么有关?为什么?你能想出办法证明圆的周长跟它有什么样的关系吗?
4、哪个数学家对圆的周长有关的知识做出了卓越的贡献
(设计意图:学生通过看书自学,对本课知识点有个初步了解,在完成前置作业的过程中对本课知识的重难点进行思考,带着问题和疑惑走进课堂,使学生产生学习的动力和积极性)
二、互动交流,探究新知
1、认识圆的周长
⑴让学生根据自己的理解说说什么叫圆的周长
⑵学生通过摸一摸圆形学具,感受围成圆的线是曲线,完善圆的周长的概念。 ⑶谁能用一句话来概括一下圆的周长?
⑷课件演示圆的周长,并出示圆的周长概念。
围成圆的曲线的长,叫做圆的周长。
(设计意图:学生通过看书自学,对圆的周长概念有了初步认识,再通过摸一摸的感知活动对圆周长的曲线特点有了深刻体会,课件演示让学生对圆的周长的直观形象进行感知,从而对圆周长概念有了深刻理解)
2、实验、探究圆的周长与直径的关系
⑴认识圆的半径和直径
学生通过折圆纸片,找出半径和直径,通过观察,测量明确d﹦2r
⑵猜测圆的周长与什么有关系
师:长方形的周长和什么有关系正方形呢?那么圆的周长究竟与什么有关系呢?谁来说一说?你觉得可以用什么办法来证明?
预设:
学生1出示大小不一的圆,分别比较它们的.直径和周长,得出直径大的周长就大。
引导小结:①圆的直径越长,它的周长也就越长,圆的直径越短,它的周长也就越短。
②我们发现了圆的周长与直径的比值都是三点几,也就是说圆的周长都是直径的3倍多一些。
(设计意图:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情。)
3、学习圆周率的有关知识
⑴引入圆周率
师:其实,很早就有人研究了圆的周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是一个固定的数,我们把它叫做圆周率。(板书: =圆周率)
⑵介绍圆周率的资料,并对学生进行爱国主义教育
师:关于圆周率的知识,你知道哪个数学家在这方面做出了什么样的卓越贡献?(学生通过预习有一些初步的印象。)
课件播放圆周率的资料完善学生的记忆。
在当时,祖冲之所算的圆周率的值要比外国科学家早多少年?听完刚才的这些资料介绍,你有什么感想?
师:我们真为我们国家能出现这样一伟大的数学家感到骄傲和自豪,老师也希望同学们长大以后,能成为一个了不起的人,对国家有用的人。
⑶教学圆周率的读写法及数值
师:对于圆周率,我们用希腊字母л来表示。(板书л)
①让学生跟老师读,并用手指在桌子上边写边读。
②经过数学家们研究发现圆周率是一个什么样的小数呢?
学生回忆预习的内容,师提醒学生明确圆周率是一个无限不循环小数它的数值是л=3.1415926……(板书:л=3.1415926……)圆的周长是它直径的∏倍,是一个固定不变的数。 ③圆周率的近似值。
师:随着现代科技的发展,借助超级计算机,人们算出的圆周率,小数点后面已经达到了万亿位。但是在实际生活中,我们并不需要这么多的小数,一般保留两位小数。(板书:л≈3.14)
④学生看书,再次阅读圆周率的知识点介绍
(设计意图:圆周率是新出现的一个概念,让学生从预习的初步感知,到探索中对圆周率的理解,到再次的看书完善对圆周率概念的陈述,了解近似值的大小取值,让学生对圆周率有了深刻的认识,为圆周长的公式推导打下了基础,学生在这个过程中体会到攻破难关的喜悦。)
4、圆周长计算公式的推导
提问:圆的周长一般用字母什么来表示?圆的直径呢?
那么根据周长与直径的关系我们可以得到一个什么样的公式
引导学生回答并板书:C÷d=Л,
那么C=?(板书:C=лd)
让学生互相说说出公式所代表的意义,并汇报。
想一想,直径和半径的关系,已知半径r,圆的周长C又等于什么?学生推导教师板书:C=2лr
三、解决实际问题
1计算下面各圆的周长
圆的周长教案 篇8
教材分析:
这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。
教学目标:
1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。
2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。
3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。
教学重点:
通过多种数学活动推导圆的周长公式,能正确计算圆的周长。
教学难点:
圆的周长与直径关系的探讨。
教学准备:
多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。
教学过程:
一、把准认知冲突,激发学习愿望。
1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)
2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)
3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)
二、经历探究全程,验证猜想发现。
(一)认识圆周长的含义并初步感知圆周长与直径之间的关系。
1.谈话:那什么是圆的周长呢?(课件出示3个车轮)
2.师:上面的3个数据是表示什么的?(生:圆的'直径)“英寸”是什么意思?(学生看书回答)
3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)
(二)交流测量圆周长的方法
1.学生拿出课前剪的圆,互相指一指它们的周长。
2.用什么办法测量它们的周长?(同桌交流方法)
3.指名到前面投影上展示测量周长的方法
①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向这里,圆滚动一周的长就是这个圆的周长。
②绕圈法。明确:线贴紧圆周,把多余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。
③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。
4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的“化曲为直”的方法。
5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎么办?引发学生探究圆的周长与直径之间的关系。
(三)认识圆周率。
1.谈话:接下来同学们分4人小组,选择自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)
2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)
3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的3倍多一些)
4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的周长大约是直径的3倍)
5.介绍祖冲之在求圆周率中做出的贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)
6.学生说说从资料的介绍中知道了什么?(学生交流自己的学习所得)
7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出
的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。希望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。
(四)推导公式
1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎么计算?(生:圆的周长=圆周率×直径)
2.谈话:如果圆的周长用大写字母C表示,那么这个公式用字母怎么表示?
3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的直径是半径的两倍)那这个公式还可怎么变换?
4.齐读公式,加深印象。
三、刷新应用能力,总结巩固新知。
1.(课件出示第1题)学生口答两个圆的周长。
2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)通过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)
3.(课件出示一个喷水池)一个圆形喷水池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)
4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)
四、交流学习收获,课后拓展延伸
1.通过这节课研究圆的周长,你有什么收获?(学生全班交流)
2.谈话:现在如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎么做?(学生独立完成,后全班交流)有没有其它方法?(学生可通过计算解决,也可直接观察两个图比较)
3.师:种种方法都可以帮助我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)
教学反思:
一、“情境”与“知识”两条主线相互交融。
结合本节课的教学内容和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们知道,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此非常感兴趣,也有一定的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一起,形成一个完整的统一体,激发了学生的学习兴趣,时学生积极主动地投入到学习活动中。
二、动手操作让学生亲身经历知识的形成过程。
动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们提供了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选择、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践能力,获得积极的情感体验。
三、数学阅读让学生感受数学的厚实的文化。
在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。
【圆的周长教案】相关文章:
《圆的周长》教案02-26
圆的周长教案11-18
圆的周长教案(15篇)03-27
圆的周长教案15篇02-23
圆的周长教案(集锦15篇)03-30
圆的周长教案汇编10篇02-12
圆的周长教案汇总五篇01-27
圆的周长教案模板汇编5篇07-02
圆的周长教案集锦六篇08-11