当前位置:9136范文网>教育范文>教学反思>《圆柱的表面积》教学反思

《圆柱的表面积》教学反思

时间:2024-08-22 18:58:34 教学反思 我要投稿

《圆柱的表面积》教学反思15篇

  作为一位到岗不久的教师,课堂教学是我们的工作之一,借助教学反思我们可以快速提升自己的教学能力,那要怎么写好教学反思呢?以下是小编帮大家整理的《圆柱的表面积》教学反思,欢迎阅读与收藏。

《圆柱的表面积》教学反思15篇

《圆柱的表面积》教学反思1

  教学要求:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

  教学重点:圆柱表面积的计算。

  教学难点:圆柱体侧面积计算方法的推导。

  教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。

  学法指导:采取引导 放手 引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具:圆柱体教具、多媒体课件。

  学具:圆柱形纸筒、茶叶桶。

  教学过程:

  一、检查复习,引入新课

  (复习圆柱体的特征)

  师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

  问:圆柱上下两个圆形的平面叫圆柱的什么?它们的'关系怎样?两底面之间的距离叫什么?这个曲面叫什么?

  引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

  二、引导探究,学习新知

  (一)教学圆柱表面积的意义

  设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

  板书:底面积×2+侧面积=表面积

  要求圆柱的表面积,首先应该计算它的底面积和侧面积。

  (二)根据条件,计算圆柱的底面积。

  圆柱的底面是圆形,同学们会求它的面积吗?

  (多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)

  条件:(厘米) r=3 d=4 c=6.28

  底面积(平方厘米) 28.26 12.56 3.14

  (三)教学圆柱体侧面积的计算

  1、引导探究圆柱体侧面积的计算方法。

  (1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

  想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

  (2)小组合作探究。(剪圆柱形纸筒)

  (3)汇报交流研究结果,多媒体课件展示。

  (4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

  2、计算圆柱体的侧面积。

  多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

  条件(厘米) h=5 h=8 h=10

  侧面积(平方厘米) 94.2 100.48 62.8

  (四)教学求圆柱的表面积。

  1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

  2、学生根据数据进行计算?

  3、汇报计算方法及结果,媒体出示结果进行验证。

  表面积(平方厘米) 150.72 125.6 69.08

  (五)小结:圆柱表面积的意义及计算方法。

  三、练习巩固,灵活运用

  (一)多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图,引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?

  指出:圆柱表面积在实际计算中的意义。

  (二)根据要求练习。

  1、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?(只列式不计算)

  2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?(只列式不计算)

  3、用铁皮制一个圆柱形的油桶,底面半径3分米,高12分米。制这个油桶至少要用铁皮多少平方分米?(得数保留整十平方分米)

  根据学生的计算结果,教学用“进一法”取近似值。

  小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

  (三)操作练习。

  根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。

  练习要求:(多媒体出示)

  讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

  测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

  计算:根据量得的数据,列出相应的算式并算出结果。

  反思:

  一、合理灵活地组织和利用教材

  “圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。

  二、较好地体现了教师主导与学生主体作用的统一。

  本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。

  1、直观演示和实际操作相结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作最后探究出侧面积的计算方法。

  2、讲练结合。

《圆柱的表面积》教学反思2

  1、直观演示和实际操作相结合

  新课开始,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的`侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  2、讲练结合。

  教学这节课,是以讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

《圆柱的表面积》教学反思3

  《圆柱的表面积》这节课是我从教以来上的第一节市级公开课,若干年后改用苏教版教材,又在市级六年级新教材培训时上了这节课。“圆柱的表面积”是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率。这学期再一次教学圆柱的表面积,我深入钻研教材,并对以往的教学经验进行了整理,注重了知识的系统化教学,取得了较好的教学效果。

  一、化曲为直沟通联系。

  课前布置预习作业,找一贴有商标纸的椰子汁罐,沿高剪开你有什么发现,然后给罐的上下底面剪两个底面给贴上。课上由一张长方形纸卷成圆柱,平面到立体,而后由圆柱展开成一个长方形,立体到平面。渗透了“化直为曲”“化曲为直”的思想。学生碰到圆柱侧面积问题时自然能运用,交流时,说沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。让学生观察后说出:展开后的长方形与圆柱侧面积的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。通过“展”、“围”的几次操作,让学生切实建立这两者之间的联系。

  二“生活课堂”建立表象

  本节课中,现实生活问题的解决,根据学生原有的.知识结构,从实际出发,给学生充分的思考时间,对问题进行独立探索尝试、同桌讨论交流,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

  三、抓住本质,理清思路。

  本堂课中探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。根据以往经验,在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在上这节课之前,我利用时间帮助学生把圆的周长和面积公式复习到熟练程度,侧面积的计算学生自然没困难。为帮助学生理清思路,表面积的计算分三步去进行,侧面积、底面积、侧面积加上两个底面积就是表面积。课上遇到计算比较繁琐的将数字改简单易算的,这节课的容量大,我觉得不必在计算上花费大量的时间。

  实践下来,通过学生的作业反馈中,发现绝大部分算式列得都正确的,几个公式搞的还是清楚的,但是小数乘法由于3。14和带0整数的参与,有些错误。接下来的练习课中综合的表面积题中要继续加强。

《圆柱的表面积》教学反思4

  《新课标》指出:在课堂教学中,要面向全体学生,为每一个学生的发展创造条件,让优秀学生不断出现,并且加快发展。让后进生也能跟上,并且在原有的基础上有较大的提高,达到个人发展的较高水平。在这个学期,我也一直注重这方面的引导,所以在探索圆柱侧面积的计算公式时,有许多同学不知道该如何推导公式,针对这种情况,我尊重学生的差异,采取分层要求:a、不知道怎么求圆柱侧面积的同学,马上开动脑筋想想:能否将这个曲面转化成我们以前学过的平面图形。如果行,怎么转化。b、知道怎么求圆柱侧面积的同学呢?我又有另外的要求:你们看能不能再结合实验操作清晰地表述圆柱侧面积计算方法的.推导过程。

  在这样分层要求的情况下,每个学生的研究目标都很明确。每个学生经过独立思考后,都有不同程度的发现,这样就促使小组交流活动有效进行。

《圆柱的表面积》教学反思5

  一、创设情境,悬念导入。

  上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?

  板书课题:圆柱的表面积

  二、合作探究,发现方法。

  1、圆柱的表面积包括哪些面的面积?

  2、研究圆柱的侧面积。

  (1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?

  (2)学生想办法亲自验证。

  (学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。)

  师问:①剪、拆的过程中你有什么发现?

  ②长方形的长当于什么,宽相当于什么?

  ③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?

  (3)推导圆柱体侧面积的计算公式:

  通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽

  所以:圆柱的侧面积=底面周长×高

  3、明确圆柱的表面积的计算方法。

  师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?

  板书:圆柱的表面积=圆柱的侧面积+两个底面的面积

  三、实际应用

  现在你能求出做这样一顶厨师帽需要多少面料吗?

  出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  1、引导:①求需要用多少面料,实际是求什么?

  ②这个帽子的表面积 的是什么?

  2、学生同桌讨论,列式计算,师巡视指导。

  3、汇报计算情况。

  板书:帽子的.侧面积:3.14×20×28=1758.4(cm2)

  帽子的底面积:3.14×(20÷2)2=314(cm2)

  需要用面料: 1758.4+314=20xx.4≈20xx(cm2)

  答:需用20xxcm2的面料。

  四、巩固练习:课本第14页“做一做”。

  五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。

  六、作业:课内:练习二第5、7题;课外:练习二第6、8题。

  附:板书设计

  圆柱的表面积

  长方形的面积= 长 × 宽

  圆柱的侧面积=底面周长 × 高

  圆柱的表面积=圆柱的侧面积+两个底面的面积

  例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  帽子的侧面积:3.14×20×28=1758.4cm2)

  帽子的底面积:3.14×(20÷2)2=314(cm2)

  需要用面料: 1758.4+314=20xx.4

  ≈20xx(cm2)答:需用20xxcm2的面料。

《圆柱的表面积》教学反思6

  圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”,首先我给学生一张长方形美术纸,用这张纸做成一个圆柱体,让学生以小组为单位做出它的底面,看谁的最好,学生的思维很好,给出了多种想法,

  方法一:用一张纸盖住圆柱,沿着边缘剪(不会很圆)

  方法二:把圆柱立起来用笔描绘出来地面再剪(不好描,自然不会很圆)

  方法三:用尺子量出直径,算出半径,用圆规画出圆再剪(有点接近了,但是直径不会很精确)

  方法四:把圆柱压扁,量出直径,接着同上做法(误解,这里的直径其实是半个圆的周长)

  方法五:量出美术纸的'长,就是底面的周长,由此求出半径,再画圆贴上(很好,能理解侧面积求解的难点)通过这些活动后,再让学生自学表面积的公式,自然水到渠成了。课堂交给学生,会有你意想不到的事情。

《圆柱的表面积》教学反思7

  教材分析

  《圆柱的表面积》包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。

  例2是求圆柱的表面积。先说明圆柱的表面积的意义,在给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分,求表面积。例3是让学生运用求圆柱表面积的方法求出做一个没有盖的圆柱形铁皮水桶的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。

  学情分析

  本班学生动手能力不是很强,自主探究方法、方式较少。

  教学目标

  使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。

  教学重点和难点

  理解和掌握求圆柱表面积的计算方法。

  教学过程

  (一)创设生活情景,激励自主探索

  在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”

  (二)创设探究空间,主动发现新知

  1、 认识圆柱的表面

  师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?

  生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。

  师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)

  生:我知道了,圆筒是用长方形纸卷成的.

  师:各小组试试看,这位同学说的对吗?

  (其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)

  师:还有别的可能吗?如三角形、梯形。

  生:不能。如果是的话,就不是这种圆柱形的饮料罐了。

  (评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)

  2、 把实际问题转化为数学问题

  师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?

  学生观察、思考、议。

  生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。

  生B:求饮料罐铁皮用料面积就是求:

  圆面积X2+ 长方形面积

  生C:必须知道圆的半径、长方形的长和宽才能求面积。

  生D:我看只要知道圆的半径和高就可以求出用料面积。

  师:我们让这位同学谈谈他的想法。

  生D:长方形的长与圆的周长相等,长方形的宽与高相等。

  所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。

  师随着板书:长方形 = 长 × 宽

  ↓ ↓ ↓

  圆柱的侧面积 = 底面周长 × 高

  (三)自主总结规律 验证领悟新知

  让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 r h

  师:如果圆住展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (四)解决生活问题 深化所学新知

  师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。

  生汇报。

  师:通过计算,你有哪些收获?

  生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于则面积加上底面积和的两倍。

  生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。

  板书设计

  长方形 = 长 × 宽

  ↓ ↓ ↓

  圆柱的侧面积 = 底面周长 × 高

《圆柱的表面积》教学反思8

  “圆柱的表面积”一课,教材先提出“圆柱的表面积指的是什么”,让学生在交流中逐步理解圆柱表面积的含义。然后安排了让学生将圆柱模型展开,看一看展开的面是由哪几部分组成的,把它们标出来等探究活动,目的是让学生经历实验研究,建立数学模型的抽象思维过程,发现圆柱的表面积与已经学过的图形面积之间的联系,从而得到圆柱的表面积的计算方法。

  对于圆柱表面积的知识,学生不是一张“白纸”。有的学生可能已经从数学课本上了解了一些,加之在“圆柱的认识”中也有了一些体验和感悟,个别学生在课外学习中已经知道一些圆柱表面积的计算方法。但是即使学生知道方法,却不一定真正理解。所以,教学中教师注重通过出示学习材料、提问、让学生操作和演示等活动,帮助学生获得圆柱的表面积与圆面积、长方形面积之间的联系。对于圆柱体侧面积计算公式的推导,要遵循主体性原则,让学生动手操作,在观察、推理中促进知识的迁移,使学生掌握圆柱体侧面积的计算原理和方法,即通过“等积变形”将圆柱的侧面转化为长方形。同时在教学过程中要尊重学生的知识基础和已有的生活经验,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程,并根据课堂教学的实际调整教学思路。

  我认为.数学建模活动要有利于学生的数学理解。数学教学活动要促使学生“真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验”。因此,数学教学活动的设计要有利于学生理解数学。本节课的教学,要让学生明确圆柱表面积的含义,知道表面积的计算方法,会用表面积的计算公式进行计算,更重要的是要引导学生经历探究圆柱表面积计算公式的过程,遵循由“观察物体——建立表象——抽象图形——建立模型(空间观念)”的认知规律,通过实践操作、讨论、交流等活动,促进学生对数学的理解。课开始,教师从数学知识的内在联系入手,提出两个综合性问题,唤醒学生对有关表面积计算的回忆,这是顺利开展数学活动、理解圆柱体表面积的重要基础。接着提出:“圆柱的表面积指的又是什么?”为后来的操作和丰富直观表象起到了导向作用,从而为学生经历建模过程,达成数学理解奠定了坚实的基础。

  本节课我安排了自己制作、剪开、展开侧面、观察图形等活动。通过实践操作,使学生领悟长方形的长相当于圆柱底面的周长,长方形的宽相当于圆柱的高,从而逐步归纳出圆柱的表面积的计算公式。由此可见,借助实践操作活动建立丰富的直观表象,可以为学生的数学理解提供支撑,更重要的.是在操作过程中学生积累了数学活动经验,奠定了良好的数学理解基础。

  我给学生留出了较为充裕的思考与实践操作的时间,在得出结果后,教师尽可能全面把握学生的情况,及时捕捉课堂资源,提出:“说一说,在计算圆柱的表面积时,应注意些什么?”组织学生进行交流,在交流和讨论中,形成师生、生生之间的有效互动,促进学生将实际问题抽象成数学模型并进行解释与应用。

  在练习中,我首先出示一组基本练习题,使学生熟练掌握求一般的圆柱体表面积的方法,加深对圆柱体表面积公式内涵的理解和把握。接着进一步联系生活实际提出问题让学生解决,体验运用知识成功解决问题的愉悦。最后,通过让学生再次回想计算圆柱体表面积的公式,进而加深对新知识的掌握。

《圆柱的表面积》教学反思9

  这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。

  一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。

  二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由 2 个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。

  三、我也体验到了怎么教数学。

  ( 1 )只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。

  ( 2 )立足发展学生的能力,设计课堂教学的策略。

  ( 3 )树立正确的`教学观,不因考试而教学,教学应以开发学生智能为使命。

  四、不足改进。在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。

《圆柱的表面积》教学反思10

  本节课在教学上采用了引导、放手、引导的方法,通过教师的“ 导” ,鼓励学生积极、主动地探究新知。

  首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的.计算公式,然后我又启发学生:圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。这时有的学生会说,沿高展开后还可能得到正方形或平行四边形,这是两种特殊现象。借此我又让学生自己进行操作、尝试,得出了与书上不一样的结果。这样做,不仅启发了他们的思维,又培养了他们的创新意识。

  在练习表面积的实际应用时由易到难,层层提高,又很自然进行了“ 进一法” 的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

《圆柱的表面积》教学反思11

  一节课讲得再好,关键是学生学到了什么。

  今天我在讲圆柱的表面积时,先是让学生想像圆柱是由哪些部分构成的,通过对圆柱结构的了解,让学生明白在计算圆柱表面积时,我们一定要看清题目所提供的信息,如果是一个实物图,这个还好些,我们只要根据题目所提供的实物图进行解答。如果题目所提供的信息是一个生活中的实物,我们在解决时就要结合实物实际情况进行解析。如油桶的制作它就是要算圆柱的.侧面积与两个底的面积。再如水桶的制作,就不再是在侧面积的基础上加上两个底面积,而是只要加上一个底面积即可。如给一个大厅里的圆柱子刷涂料,这是要算的面积则是这个圆柱的侧面积。所以在讲解时,我放手让学生从生活中找不同的圆柱体,从而让学生了解生活,了解数学。本节课还有一个重点,那就是让学生明白圆柱体展开后,它的侧面是一个长方形或一个正方形,一般而言,展开的长方形的长是与圆柱底面的周长是相等的,否则这个水桶就会漏水。这个知识点是本节课的重点,同时也是学生以后作业中常出错的“闪光点”。所以本节课在教学过程中,我有意让学生通过圆柱体进行实际操作,让学生从内心深处明白,圆柱底面周长就是展开后长方形的长。

  虽然今天学生作业只是套用公式,学生没有什么失误,但在拓展题,还是暴露出灵性不足。希望在以后练习中还需进一步强化,从而达到熟能生巧的地步。

《圆柱的表面积》教学反思12

  教学内容:

  九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题

  教学目标:

  1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。

  教具准备:

  圆柱形的物体,圆柱侧面的展开图

  教学重点:

  理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  教学难点:

  根据实际情况来计算圆柱的表面积。

  教学过程:

  一、复习

  下面()图形旋转会形成圆柱。

  二、认识侧面积的意义和计算方法。

  1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

  问:你能想办法算出这张商标纸的面积吗?

  ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

  ⑵交流:你们是怎么算的?

  沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

  ⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

  观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?

  使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

  2、出示例1中的罐头。

  ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?

  ⑵出示数据:底面直径11厘米高:15厘米

  ⑶学生算出商标纸的面积。

  ⑷交流:你是怎么算的?先算什么?再算什么?

  3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

  追问:怎么算圆柱的侧面积?

  圆柱的侧面积=底面周长×高

  长方形的面积=长×宽.

  4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?

  5.独立完成“练一练”第1题

  三、认识表面积的意义和计算方法。

  1、出示例3中的圆柱。

  ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

  ⑵让学生算一算后交流。师板书:

  长:3.14×2=6.28(厘米)宽:2厘米

  ⑶圆柱的两个底面的直径和半径分别是多少厘米?

  板书:直径2厘米半径1厘米

  2、引导画出圆柱的展开图。

  ⑴这个圆柱有几个面?分别是什么?

  ⑵如果要画出这个圆柱的'展开图,要画哪几个图形?分别画多大?

  ⑶在书上方格纸上画出这个圆柱的展开图。

  ⑷交流:你是怎么画的?

  3、认识圆柱的表面积。

  ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

  板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

  ⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。

  4、练习:完成“练一练”第2题。

  ⑴各自练习,并指名板演。

  ⑵对照板演,讨论:

  这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?

  想一想:如果知道的是圆的周长呢?

  四.总结反思

  1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?

  2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?

  畅谈体会。

  五、巩固应用

  1.完成练习六第1题。

  注意指导学生思考问题要求的是圆柱的哪个面。

  2.完成练习六第2题。

  先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?

  教学反思:

  本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。

  1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

《圆柱的表面积》教学反思13

  一、合理灵活地组织和利用教材。

  “圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。

  二、较好地体现了教师主导与学生主体作用的统一。

  本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。

  1、直观演示和实际操作相结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  2、讲练结合。

  教学这节课,我改变了传统的先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的`意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3d=4c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7h=6h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

  三、较好地培养学生的合作意识和实践能力。

  1、培养了学生的合作意识。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。

  2、培养了学生的实践能力。

  新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。

  四、较好地利用现代化的教学手段。

  本节课合理地利用了多媒体教学技术。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系。

《圆柱的表面积》教学反思14

  著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。

  圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。教材中只介绍了把圆柱沿着高将侧面展开,得到一个长方形。通过长方形的面积推导出圆柱的侧面积,这是一种普遍的现象,学生容易理解和接受。但为了培养学生的自主学习能力和自主探究的兴趣,我将圆柱侧面积的教学大胆改革,让学生试先准备好各种圆柱形的纸盒,给学生足够的空间让学生自主探索圆柱体的侧面展开情况及侧面积的计算方法。整节课,学生学习积极性非常高,收到了好的教学效果,也使其自主探究能力和小组合作能力都得到了提高。

  反思如下:

  一、圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的'兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!”“展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始给圆柱穿上一层衣服,然后沿着斜线剪开,结论不用说,平行四边形展现在同学们面前。继续用平行四边形推导侧面积公式,平行四边形的底是圆柱的底面周长,高呢?是不是平行四边形的斜边?经过一番争论之后,得出高需要重新做垂线。

  二、展开之后的图形可以怎样还原成圆柱?数学课要培养学生的思维能力,如果会展开那只是顺向思维,展开后会还原才能培养他们的逆向思维。“长方形和正方形都有两种还原方法,那平行四边形是否也有两种还原方法?”问题抛出又产生了分歧,很多同学只会按剪开之后的形状还原,再换个方向竖起来就不行了,总是上下各有两个尖角,其实这是学生拿平行四边形的方式有问题,让他们把平行四边形的斜边贴到桌子上再还原,这样就有很多人展开了笑脸。“找窍门,怎样不贴到桌子上也能正确还原?”细心的同学发现只要捏住相邻的两个角就能轻松还原了,一句话——角对角。得到结论:只要是平行四边形一定可以围成圆柱。

  通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。

  实践也使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

《圆柱的表面积》教学反思15

  圆柱圆锥是小学阶段几何教学最后一部分内容,圆柱表面积计算公式的探究非常适合学生自主探究。结合我校开展的“提纲导学、自主探究”活动,在本节课的教学中,我做了积极的尝试,效果非常不错。

  首先,在新授课之前,我在去年设计的道学提纲基础上稍作修改,形成了自己的导学提纲:

  1、找一个圆柱形的物体,测量出它的底面直径和高(尽可能取整数,最多保留一位小数)

  2、你能动手用彩色纸给这个圆柱形的物品穿上漂亮的“外衣”吗?动手试一试

  “穿衣”之前先思考:圆柱形物品有哪几个面?这些面都是什么形状?

  3、把圆柱体的漂亮外衣脱下来,展开铺在桌面上观察:圆柱的外衣包含哪几部分?都是什么形状的?

  4、你能算出用了多少彩色纸吗?注意观察:计算每部分的面积所需要的数据,就是圆柱的什么?

  5、将你的计算过程试着写在反面。

  把这个提纲发给学生,作为晚上的作业。因为学生有了圆的周长、圆的面积提纲导学探究经历和体验,对这次的探究比较有兴趣,加之家长的`大力支持,全班同学都很认真很用心的进行了探究实践,不及给圆柱体穿的外衣漂亮、精致,而且认真按提纲的要求进行了观察、思考。

  课堂上,学生饶有兴趣的互相展示了自己的作品,互相交流了自己的实践过程和操作中的乐事。在此基础上,孩子们争先恐后的举手发言,向全班同学展示自己的探究过程和发现。他们通过动手实践发现:给圆柱穿上外衣需要一块长方形的彩纸和两个同样大小的圆形,长方形那个彩纸的长等于圆柱地面周长,宽就是圆柱的高,而两个圆形就是圆柱的底面。孩子们互相交流,互相补充,很自然很直观地得到了圆柱的表面积计算公式,老师在这其中只起到了一个穿针引线的作用,课堂气氛活跃,孩子们学的轻松愉快而且扎实。

  不足的是,课后练习时,学生计算时由于数字不好算,常有为难思想,计算失误较多。还有的学生,列式时容易丢三落四。

  通过本节课的教学,我以后会注意以下问题:

  一、提纲导学法是很不错的方法,以后会根据课题继续尝试。

  兴趣是最好的老师,这种作业学生比较喜欢,并且各种能力都会得到锻炼和提高;让学生能够按提纲步骤探究,避免了上课探究时小组活动中部分孩子的“观众、听众”角色,每个人都要自己亲手去做,提高了学生参与意识;家长参与了孩子的活动过程,关注了孩子的发展过程,有助于了解孩子的情况;

  二、探究不能只重过程忽视结果

  在学生探究得到结果后,更要重视知识的灵活运用,要注意不能让学生重过程轻结果,更要重视培养和发展学生运用所学知识解决实际问题的能力。解决问题时,比较复杂的问题,不要列综合算式,以免把本来会做的题弄错,提高正确率。

  本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课教学与练习巩固有机地融为一体,使学生做到动手与动脑相结合,使课堂做到讲与练相结合。为了让学生能更好地掌握本节教学内容,我认真地分析了教材的教学三维目标要求与学生的实际数学水平之后,并结合学生现有的数学基础,在教学时,着重注意做好以下几个方面:

【《圆柱的表面积》教学反思】相关文章:

《圆柱的表面积》教学反思09-19

“圆柱的表面积”教学反思10-20

(精选)《圆柱的表面积》教学反思06-29

《圆柱的表面积》教学反思05-20

《圆柱的表面积》数学教学反思08-05

圆柱的表面积教学反思15篇08-20

《圆柱的表面积》教学反思(15篇)08-21

《圆柱体的表面积》教学反思06-09

《圆柱的表面积》教学反思(精选15篇)06-18

圆柱的表面积教学反思(15篇)08-07