- 相关推荐
公倍数的教学反思
作为一位刚到岗的教师,我们要有一流的教学能力,借助教学反思我们可以拓展自己的教学方式,写教学反思需要注意哪些格式呢?以下是小编收集整理的公倍数的教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
公倍数的教学反思1
“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。我从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。使这些枯燥的知识变成鲜活、灵动数学,让学生在解决问题的过程中既学到了知识,又体念到了学数学的快乐。
本节课是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。
在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。本节课的意图是通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。但是,教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。本节课把“原来铺墙砖”的题目改为“找两人的共同休息日”来建立概念。体现了新课标的要求,学生的学习内容应该是现实的、有意义的、富有挑战性的;有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;使学生感到数学就在自己身边。充分利用课堂中最有效的时间是前15钟,做好这段时间的教学,提高了学习效率。
本节课两个数的公倍数和最小公倍数的意义,通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化,渗透集合思想,培养学生的'抽象概括能力这些目标展开教学。把本节课的重点应放在学生对数的概念的认识上,体现了新课标中“4—6年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数”的要求。小学生的生活实际问题的解决能力普遍较低,把运用“公倍数与最小公倍数”的知识解决简单的生活实际问题,定为本节课的难点。体现新课标中“人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能”的要求。
小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。
如何激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。
总之,本课体现了这样的设计理念:将直观演示与抽象思维相结合,让学生在自主参与的基础上感悟、理解、应用、巩固。
公倍数的教学反思2
《新课程标准》指出数学教学要紧密联系学生的生活环境,从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。
为了让这些枯燥的知识变成鲜活、灵动数学,使学生体会到最小公倍数在实际生活中的运用,课始,创设了生活中的事例,要求用公倍数来求的,这样我把新知找4和6的'公倍数融入到学生喜欢的生活中中,让学生在解决问题的过程中,自然而然地接受了新知,起到了“润物细无声”的作用。 教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思考、探索研究数学。
因此在研究最小公倍数的意义时,我让学生亲历知识的形成过程,设计了求两数的公因数只有1的情况下,最小公倍数怎样求?两数是倍数关系时最小公倍数怎样求?你是怎么想的?一系列开放的数学问题,每个问题都为学生留出了足够的思维活动空间,让学生在高度的思维状态下,调动大量的原有知识参与新知识的构建。
学生围绕这些问题,自主地在小组内开展了探究性的合作活动,根据自己已有的知识和经验,用自己的思维方式,自主地、开放地去探究,生成了各种方案资源。使学生的数学学习活动真正成为一个生动活泼、积极主动的、富有个性的过程。给我留下一个深刻的印象就是“教学的精彩在于学生的发现。”
公倍数的教学反思3
教学内容:
教材第88、89页的内容及第91页练习十七的第1、2题。
教学目标:
1.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点:理解两个数的公倍数和最小公倍数的意义
教学难点:自主探索并总结找最小公倍数的方法.
教学具准备:多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:小组合作谈话法
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1.在数轴上标出4、6的倍数所在的点。
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2.引入公倍数。
(l)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3.用集合图表示。
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4.引人最小公倍数。
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,…
12,24,
4和6的公倍数:
5.引出例1。
前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。
(1)操作探究。
学生任意选择操作方式。
①用长方形学具拼正方形。
②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?
(2)反馈并揭示意义。
①请选用第一种操作方式的.学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm
②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。
③正方形边长还有可能是几?你是怎样知道的?
④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。
思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)
⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。
三、巩固应用,内化提高
(1)画一画,说一说。
小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?
引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。
(2)完成教材第89页的“做一做”。
学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。
(3)独立完成教材第91页练习十七的第2题。
(4)完成教材第91页练习十七的第1题。
指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。
四、回顾整理、反思提升。
通过今天的学习,你有什么收获?
本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。
板书设计:
最小公倍数(一)
4的倍数:4、8、12、16、20、24、28、36……
6的倍数:6、12、18、24、30、36……
4和6的公倍数:12、24、36……
4和6的最小公倍数:12
教后反思:
优点:本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。
不足:首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。
公倍数的教学反思4
在学习本课之前,学生已理解和掌握了倍数的含义,初步学会了找一个数的倍数。
例1学生通过观察、操作,在用长3厘米、宽2厘米的长方形纸片铺满边长6厘米的正方形后,得出结论,6既是2的倍数,又是3的倍数,所以能正好铺满这个正方形。根据这一发现,继续引导学生思考:“这样的长方形还能铺满边长是多少厘米的正方形?你是怎么想的?”学生分析、比较后发现还能铺满边长是12厘米、18厘米、24厘米……的正方形。学生通过观察比较后还发现2和3的公倍数6、12、18、24等数还具有如下特征:(生1)都是双数,各个数位上的和又是3的倍数;(生2)6+6=12,12+6=18,18+6=24;(生3)2×6=12,3×6=18,4×6=24。根据以上规律,学生总结只要找到两个数的最小公倍数,就能找到其它的公倍数。这一发现对于找两个数的`公倍数有着重要价值。
之后,找6和9的公倍数和最小公倍数,很多学生也是根据以上规律,先找到了两个数的最小公倍数,再根据最小公倍数去找这两个数其它的公倍数。但也有几个学生出现了如书上的第1种方法,先依次分别写出6和9的倍数,然后再找出它们的公倍数。接着,我再向学生介绍了书上的第2种方法,先找出9的倍数,再从9的倍数中找出6的倍数。当我提问为什么先找出9的倍数时,学生回想以前在做一一列举时也是用的这种方法,先列举大的数的倍数可以少写一些倍数。等以后熟练后应用这种“大数扩大法”会很简捷,所以我也比较倾向于这种方法,学生先找两个数的最小公倍数的方法固然简单,但数据一大就很难一眼找出两个数的最小公倍数,因此,我建议学生根据具体情况选择合适的方法。
最后,集合图的呈现,我改变了原来教学设计中的直接出示集合图的数据,而是在黑板上画出集合图,先引导学生观察图的特征,介绍集合图的填写方法,再让学生自己独立填写。这比直接出示引发学生的思考,如:公倍数写在中间,两边写倍数时就不要重复写了;写倍数和公倍数时都要加省略号,这些都是学生在独立填写中发现并提醒其他同学注意的地方。
因本课的学习内容较多,所以我放慢了速度,练习题都在下一节课完成,让学生先把以上的内容吸收消化了。下一节课中什么时候加省略号,什么时候不用加,求公倍数和最小公倍数时的书写格式,都是要加以强调的。
公倍数的教学反思5
教材分析
公倍数认识是小学数学教材里面的一个重要定义教材知识,教材建立在学生已有倍数概念的基础之上的,课标要求学生能认识两个数的公倍数和最小公倍数,能利用列举的方法去找出两个数的公倍数,懂得两个数的公倍数是无限的,并能确定两个数最小公倍数。教材内容从形象的情境操作入手,通过让学生去用长3厘米,宽2厘米的小长方形去铺边长为6厘米和边长为8厘米的正方形,哪个能刚好铺满?让学生操作中初步感知概念的由来,进而总结出公倍数的定义,然后让学生用列举法方法去找出两个数的公倍数和最小公倍数,教材中引导学生可以用不同的列举方法都可以找出两个数的公倍数,通过比较,让学生选择既快又喜欢的方法。教材还介绍了集合图的表示方法,初步渗透“数的集合”的概念。
本节内容在教材中有很重要的地位,一方面深化学生对倍数的认识,理解数与数之间的内在联系,另一方面是学生下步学习公倍数的应用、分数通分,分数加减的必知内容。
学情分析
从认知的角度和学生的实际况分析,本班学生大部分对“倍数”的概念已有一定的认知水平,能单独去求出一个数的几倍是多少,并且懂得用乘法去求出一个数的倍数和一个数的倍数是无限的,知道一个数的最小倍数是本身,没有最大的倍数。在学生已有的认知水平上,通过对公倍数的学习,发展学生进一步理解数与数之间的内在联系,深化学生的“倍比”思维能力,以提高学生的综合思维水平。
学习本节内容,学生在由理清两个数与公倍数之间的内在联系,能上升到会举一反三地认识多个数的公倍数是一个认知思维跳跃的发展,在教学过程中要牢牢把握两个数的倍数与它们的公倍数之间的内在联系关键点,在学生寻找公倍数的过程,能准确地有顺序的用列举的方法去找出两个数的公倍数是学生掌握知识的障碍点,学生在列举的程中往往容易漏掉其中一两个,从而找不准备两个数的最小公倍数,教师要注意培养学生解决问题的'耐心和细心。
教学目标
1、通过动手操作,感性认识等活动让学生认识并理解公倍数的定义,能从两个数的公倍数中确定最小公倍数。
2、让学生学会用列举的方法找出10以内两个数的公倍数,能在集合图中表示出两个数的公倍数。
3、让学生在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
4、进一步发展学生的合作交流意识和能力,让学生在互动的过程中获得成功的喜悦。
教学重点和难点
1、正确理解两个数的倍数与它们的公倍数之间的联系。
2、用列举法求两个数的最小公倍数的方法。
公倍数的教学反思6
本月初,我和五年级的孩子们一起学习了《最小公倍数》,最小公倍数是一个内涵比较丰富的数学概念,为了帮助学生真正理解概念的涵义,教学中我们必须让学生亲身经历概念的形成过程,这样才有可能形成有意义的学习。怎样让学生经历"最小公倍数"概念的形成过程,教学中却很有讲究。
过去我们通常所采用的方法是让学生通过"找倍数———找公倍数———找公倍数中最小的一个",在"纯数学"的范畴内经历概念的形成过程。这样的教学虽然突出了数学知识的内部联系,并能帮助学生在较短的时间内掌握需要学习的知识,能够"省下"较多的时间完成练习或学习更多的知识,但其不足之处也显而易见。比如,学生无法体会到数学与外部生活世界的密切联系,无法充分利用已有的生活经验来帮助学习数学知识;形式化的、缺乏实际意义的学习任务也往往很难真正引起学生的学习兴趣学生的学习活动常是在老师的"命令"下被动地进行,等等。
为此,在本课的教学中,我通过对教材内容做适当的重组,使课堂里的数学能够以一种充满了数学知识间的联系和数学与生活的联系的体貌呈现在学生的面前,从而构建一种生活化的数学课堂。并且我在学习本课之前给学生发了导学案,让学生做好了充分的预习,好在课堂上让学生充分发挥他们的自学能力,并让孩子们找到自信。
数学来源于生活,从学生的现实生活中寻找一些能够"自动地"反映公倍数、最小公倍数内部结构特征的实际问题,让学生通过解决这些生动具体的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验;在此基础上,再引导学生从生活"进到数学",通过对实际问题的反思抽象,引出公倍数、最小公倍数等数学概念,并通过对解决问题过程的进一步提炼,总结出求最小公倍数的方法。这样,学生获取知识的过程被"拉长"了,花的时间可能也要稍多一些,但是,这一过程中,学生的学习积极性和主动性被充分地调动了起来,当他们面对那些生动有趣的实际问题时,会自觉地调动起已有的生活经验和那些"自己的"思维方式参与解决问题的过程中来,主动地借助各种外部的'物质材料来展示自己内部的思维过程;通经历这一过程,学生能获得对数学知识更深刻的理解。同时,在这一过程中,学生不仅能清楚地体会到数学的内部联系,而且能真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到"数学化"的真正含义,从而帮助他们获得对数学的正确认识。
构建生活化的数学课堂就是要让学生在"生活和"数学"的交替中体验数学,在"源"和"进"的互动中理解数学。通过"生活中的问题",为数学习提供现实素材,积累直接经验;再通过"进到数学",把生活常识、活动经验提炼上升为数学知识。这一一进之间,也许我们才能真正理解数学教学生活化的含义;这一退一进之间,也许我们才能真正把握数学教学生活化的真谛!
从教学的实践过程来看,学生学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。
公倍数的教学反思7
教学内容:五年级下册P22—24内容教学目标:1、在解决问题的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数独有的倍数和它们的公倍数。2、探索两个数的公倍数、最小公倍数的方法,能用列举法找到10以内的两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、在自主探索与合作交流活动中,进一步发展与同伴进行合作交流的意识与能力,获得成功体验,学会欣赏他人。
教学过程:
一、解决问题:
1、呈现问题:
(1)猜一猜用长3cm、宽2cm的长方形纸片分别铺边长为6厘米和8厘米的两个正方形。可以正好铺满哪个正方形?
学生说猜想结果和想法。
(2)实践验证:
请小组拿出小长方形和画有正方形的纸,动手铺一铺。
(3)反馈交流:
A肯定:哪个正方形正好铺满?B质疑:为什么边长12cm的正方形能正好铺满,而边长16厘米的正方形不能正好铺满呢?C交流:结合学生思路板书有关算式D我们发现:6cm既是2的倍数,又是3的倍数,所以能正好铺满,8cm虽是2的倍数,但不是3的倍数,所以不能正好铺满。
(4)深入探索:
这样的长方形纸片还能正好铺满边长是多少厘米的正方形呢?
(5)反馈交流:
A板书数据:6、12、18、24……
B说理:为什么这些边长的正方形也都能正好铺满?你能举其中一个例子来说一说吗?其中最小的边长是6厘米,能找到比6厘米更小的边长吗?
C小结:我们发现,能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。
2、揭示概念
(1)揭示:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(2)提问:A2和3的公倍数中的……表示什么意思呢?揭示:2和3的公倍数的个数是无限的。B2和3的公倍数中,谁是最小的?有没有比6更小的了呢?揭示:2和3的最小公倍数是6。
(3)辨析:16是2和3的公倍数吗?为什么?
二、探索方法,优化策略。
同学们,我们知道了什么是公倍数、最小公倍数,下面让我们一起来找一找两个数的最小公倍数,不过要同学们自己来探索,自己来寻找方法,有信心吗?
1、呈现例26和9的公倍数有哪些?其中最小的公倍数是几?
2、学生探索先独立思考,再小组交流,比一比,哪个组想的方法多,想得方法好。
3、反馈呈现多种方法
方法一:列举法分别求6和9的倍数,再找公倍数、最小公倍数。
方法二:先找出6的倍数,再从6的倍数中找出9的倍数
方法三:先找出9的倍数,再从9的倍数中找出6的倍数
可能出现方法四:先找到最小公倍数,再找出最小公倍数的倍数。
4、评价方法:
方法一与方法二、方法三比,你有什么想法?方法二与方法三比,你有什么想法?方法四不失为一种好方法,但要找到最小公倍数,我们通常要用到前面几种方法来找最小公倍数。
5、出示集合图。
6、小结:通过同学们积极思考,大胆交流,我们找到了多种方法来求公倍数、最小公倍数,在解决问题时,我们可以选用自己喜欢的方法来解决问题。
三、综合练习,拓展提升。
1、完成练一练
2、完成练习四1——4
3、比一比,看谁找得快,找出下列每组数的最小公倍数。8和25和73和910和45和109和104和81和54和54
四、全课总结,畅谈收获。
五、解决实际问题(见小小设计师)
药物研究所研究出一种新药,经临床试验成功后决定向市场推广,这种药成人每天吃2次,每次2片,一天一共吃4片;儿童每天吃3次,每次1片,一天一共吃3片;如果你是药厂包装设计师,每一版药你认为设计多少颗比较合理,说说你的理由。
教学反思:
本课内容是学生四年级学习的延续,在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。这课教学公倍数和最小公倍数,要学生理解公倍数和最小公倍数的意义,学会找两个数的公倍数和最小公倍数的方法,为后面学习公因数、最大公因数的意义,会求公因数、最大公因数的方法,进行通分、约分和分数四则计算作充分全面的准备。作为全新的课改内容,本课教材编排与旧教材相比,改革的力度较大,体现了浓郁的课改气息,具体体现在以下几方面:
1、润物细无声:在解决实际问题中理解概念。用长3厘米宽2厘米的小长方形去铺边长分别是6厘米、8厘米的正方形,哪个能正好铺满?教材以学生喜欢的操作情景入手,激发学生探索的欲望,在探索中生成问题:怎样的正方形肯定能正好铺满?怎样的.不行?像这样能正好铺满的正方形还能找到吗?引发学生深入探索,在充分探索观察的基础上发现:能正好铺满的正方形的边长正好既是小长方形长的倍数,又是宽的倍数。这时引入公倍数的概念自然是水到渠成,学生觉得很自然、亲切,觉得解决的问题是有价值的,公倍数的概念也是现实的、有意义的鲜活概念。
2、多样呈精彩:在找两个数的公倍数和最小公倍数的时候,采用全开放的方式,放大学生思维空间让学生自由探索,以小组交流形成思维碰撞,呈现多彩的智慧。以评价促方法的对比,以评价促思维的深入,以评价促探索精神的提升,学生自然自得其乐,收获多多。
3、适度显睿智。在练习部分,教材能尊重学生的思维差异,能尊重学生的心理需求,让学生选用喜欢的方法去解决问题,这是适度体现的其一。其二对求两个数的公倍数、最小公倍数,教材抛弃了短除法的方法,而只要学生找10以内数的公倍数、最小公倍数,降低了学习要求,更符合学生实际。
公倍数的教学反思8
一、本知识点是人教版《数学》第十册第三单元最后一个知识点。
二、在集备中,我对这个课时的教学重点和突出重点的策略作了如下的分析:
教学重点
最大公约数、最小公倍数比较
本重点包含的要素
短除法、最大公约数、最小公倍数
与其他重点的联系
短除法、质因数、公有的质因数
突出重点的策略
(1)、用短除法求两个数们最大公约数和最小公倍数,直接用抽象出的方法:短除法;
(2)、尽可能避免涉及约数、公约数、倍数、公倍数、分解质因数的知识。在前面四个课时的准备下,进入到抽象的领域,强化抽象思维能力的训练;
(3)、通过做一做的练习,揭示出一个综合的方法,即求两个数的最大公约数和最小公倍数时,只需要一个短除法式子就可以了。所有的除数相乘得到的是最大公约数,所有的除数和所将的商相乘,得到的是最小公倍数。
另外,就这个课时的教学难点进行了分析并就这个难点提出了解决策略:
教学难点
(1)、分别用短除法求最大公约数与最小公倍数到综合在一个短除法里进行,归纳、总结能力受到挑战;
(2)、在没有其他知识准备的情况下,直接进入用短除法求,抽象思维训练有一定的阻力。
原因分析
(1)、学生归纳、总结的能力不一;
(2)、虽然短除法在前面已经学了几个课时,但毕竟是新知识且综合运用的要求较高及有较强的抽象性。
解决策略
(1)、用比较、对比的方法去研究两个相关的知识点,成效较大且容易强化。用这个方法克服归纳、总结的能力弱点是比较有效的'。建议老师可以提前在三年级就可以开始有意无意的涉及,在现在的学习,就会受益无穷了。
(2)、在课程,例5还是用两个短除法,然后才去比较。在以后的练习里,必须强调只用一个短除法就可以解决。所以,对于中下生,老师还须在做一做的练习前,举一个用一个短除法求两个数的最大公约数和最小公倍数的例子,对照归纳、总结的内容。这样,对方法的掌握会更加有帮助。
三、上课前一天的备课中,考虑到本班学生中下面较大的实际情况,决定上课的时候实施渐进的方法,即不是一开始就推出短除法,先允许有可能出现的其他方法,再通过比较,选择一种方法,有意无意的在短除法中去展开比较。这样,对于选择其他方法求出两个数的最大公约数和最小公倍数的同学来说,也给予一定的过渡空间。
四、上课时的个别片断:
(1)、进入新课前的谈话,不涉及方法,只是说,我们在前面已经学习了求两个数的最大公约数和最小公倍数,今天,我们主要来研究一下求这两种数的方法上的异同(板书:最大公约数、最小公倍数比较)。
(2)、在课题的右下方板书:例五:求28和42的最大公约数和最小公倍数。让学生在练习本上先做出来。
(3)、粗略统计
最快的差不多1分钟完成,
到一分半钟时,有15人完成,
2分钟时有45位完成,
到2分半钟时,还有5位没完成。
(4)、投影最快完成的同学的书写,用了两个短除法,由于投影幕挡住了右半面黑板,所以,只能板书在中间靠右的位置上;投影方法不同的同学的书写,用的是一个短除法,继续板书在黑板靠左的位置上;方法不同的还有分解质因数法;没有人用枚举法,也没有人用大数翻倍法。
(5)、粗略统计
用一个短除法的有6人,
用两个短除法的有42人,
用分解质因数法的有4人,
两位男同学在玩,没写,
一位女同学病了,请假。
用时少的都是用一个短除法或两个短除法求的同学。
(6)、请大家说说,求两个数的最大公约数和最小公倍数,方法上有什么相同点。
△、都可以用短除法去求;
△、也都可以用分解质因数法去求;
△、用短除法去求得话,要除到最后的两个商互质;
△、它们一样都从2除起;
△、也可以先除以7;
△、也可以直接除以14;
接着,请大家说说不同点。
△、求最大公约数只是把所有的除数乘起来,而求最小公倍数的话,还要把所得的商也乘起来。
没有同学提到用分解质因数的方法时的相同与不同点,我也就不再去提出。小结重复一遍同学所找到的相同与不同点。
指导看书时,有一位不做练习的同学突然提问:用短除的形式进行分解是什么意思?没办法,请了三位同学说了,不知是否说清楚了这一句话的意思。
△、第一个同学说:用短除的形式,就是用短除法的意思;
△、第二个同学说:用短除的形式进行分解,就是用短除法把一个数分解成一个一个的质因数;
△、第三个同学说:用短除的形式进行分解,就是我们现在用的短除法。
对于这一句话的解释,对中差生来说可能会纠缠不清。所以,我也就不再展开下去。
(7)、转移话题,大家比较一下,黑板上板书的两位同学的求法,有什么看法。基本上都说用一个短除法式子简单一点。在这里,又重复了一遍用一个短除法式子求得话,先用容易看出的两个数的相同质因数去除,最后的两个商必须是互质的,把所有的除数乘起来,就是这两个数的最大公约数,把所有的除数和两个商都乘起来,就是这两个数的最小公倍数。转入,如果换两个数又如何?请看P80做一做。
五、课后反思
(1)、集备的时候,有点凭空想象的意思,通过对教材的分析,认为重点是什么,难点又是什么;至于制定的策略多少也有一点偏颇。所以,临到上课时备课的对学生的考虑或是上课时的因地制宜的调整是很正常的;
(2)、上这个课的时候,因为有前面四、五个课时的准备,老师在准备上可能会有所松懈,上课的时候也会平淡如水,不容易调动起学生的热情,自然会引起对方法的提炼用时过少或不全面或渗透不深。要能够让大多数学生有一种根深蒂固的感觉,就必须在方法的对比上花一点功夫。当然,只用一个短除法式子求两个数的最大公约数和最小公倍数,看起来简单,上课也多次强调,但作业里就还有人还用两个短除法式子,单元测试里也有人用两个短除法式子,这也是无可奈何的事。
(3)、以集备分析为基础,以集备的策略、方法为主导,根据学生的实际情况,根据上课时的动态适当调整,任何课都能上好。
公倍数的教学反思9
本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发学生进行进一步思考其中的原因,得出因为6既是2的倍数,又是3的倍数,这个长方形纸片就能正好把它铺满;8虽然是2 的倍数,但不是3的倍数,则不行。学生具体感知公倍数的含义,揭示公倍数的概念。在教学例2找6和9的公倍数,对于学生而言并不是很难,主要是方法上的指导。尤其是用集合图表示6和9的公倍数对于学生来讲是陌生的,所以我在教学时,就直接展示集合图,让学生看图回答,这样可以比较容易地帮助学生认识这种集合图的形式,了解其内容,从而理解6的倍数、9的倍数及6和9的.公倍数三者之间的关系,并且强调因为一个数的倍数的个数是无限的,所以几个数的公倍数的个数也是无限的,后面应该用省略号。纵观这节课,学生学得还是比较轻松,掌握的较好。
公倍数的教学反思10
《数学课程标准》指出:学生的数学学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流。教师只有在思想上真正顾及学生多方面成长,顾及生命活动的多面性和师生共同活动中多种组合和发展方式的可能性,才能发现课堂教学具有生成性的特征。因此,我们应该把新课程改革的`实践目标定在探索、创造互动发生式的课堂教学,用心收集、捕捉和筛选学习活动中学生反馈出来的有利于促进学生进一步学习建构的生动情境和鲜活的课程资源。如果说过去教师备课主要着眼于如何教,那么今天教师们备课的出发点和归结点必须是引导学生如何学。这就要求教师的备课要充分地研究学生的特点及其与教材之间的关系,努力寻找教师与学生的契合点,从而真正地把教和学结合起来。这样,师生才是全身心投入,不只是在教和学,还在感受课堂中生命的涌动和成长;这样,学生才能获得多方面的满足和发展,教师的劳动才会闪现出创造的光辉和人性的魅力,教学才会成为师生共同创造课程的过程,课程实施才会从“执行教案”走向师生“互动发生”,如此课堂才会真正体现出育人的本质。
公倍数的教学反思11
求最小公倍数的方法是整除部分的难点,它抽象不易理解,且与学生已有的知识储备联系较小。在以往几轮的教学中,为达到让学生明白求最小公倍数的算理的目的,我尝试了几种不同的教学思路,但效果都不太理想,于是今年我又进行了深入地探究,真的有所顿悟,一节课下来,从孩子们兴奋的表情中,我感到许久未曾有过的轻松,多年的难题终于解决了。
课后,我把教学流程在脑子里又重新过了一遍,并与以前的教学方法进行了比较,发现解决问题的症结只有一点----让学生真正了解两个数的最小公倍数与这两个数质因数的关系。为此,教学求最小公倍数的方法时,我采用了以下几个步骤:
首先,学生小组讨论18和30的最小公倍数与18和30有什么关系,通过共同交流,发现绝大多数同学思维都停滞在最小公倍数一定是这两个数的.倍数的阶段上,于是我充分发挥了教师的主导作用,让学生把18和30分解质因数,并引导学生观察18=2×3×3,30=2×3×5,讨论交流要求的最小公倍数与18和30的质因数有没有关系,给学生充足的时间,因为学生已经知道最小公倍数是18的倍数,而18是2、3、3相乘得到的,所以有学生发现18和30的最小公倍数一定包含18的质因数2、3、3的乘积,同理也包含30的质因数2、3、5的乘积,接着提问:这6个质因数相乘后是最小公倍数吗?为什么?学生通过交流发现公有质因数2、3重复乘了一次,这样得到的公倍数就不是最小的,要想最小,只须用2×3×3×2×3×5,即用公有质因数2、3乘各自独有质因数3、5就是最小公倍数。这样在老师的引导,自己的观察、思考、发现的专注探索中学生基本上理解了求两个数最小公倍数的方法,思维得到了发展,教学难点迎刃而解,同时为后续的实际计算做好了铺垫。
通过本节课的教学,我对教师的主导作用有了新的认识——承认数学教学过程中学生应有的主体地位,并非否认数学教师在教学过程中的重要作用。因为学生的数学思维不能自发的形成,特别是抽象性较强的内容。任何创造活动都必须以一定的学习作为必要的基础。作为教师,必须深入了解学生真实的思维活动,这样才能根据学生已有的数学知识进行启发和促进。
公倍数的教学反思12
去年教学《公倍数和公因数》这一单元时,依照学生预习、阅读课本进行教学,老师没有作过多的讲解,从学生的练习反馈中,部分学生求两个数的最大公因数和最小公倍数错误百出,反思教学后,觉得用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……调查询问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“太麻烦了”。
今年教学《公倍数和公因数》这一单元时,我在去年教学《公倍数和公因数》的基础上作了一些改进:
一、仍然是将预习前置。
二、动手操作,想象延伸。
让学生动手操作,提高感知效果,帮助学生形成丰富的表象,是促进形象思维发展的有利途径。例题教学中让学生动手铺,铺后想,想后算,算后思。
用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。
学生分组操作,用除法算式把不同的`摆法写出来。
提问:通过刚才的活动,你们发现了什么?
以直观的操作活动,在具体的问题情境中体会公倍数和公因数与生活的联系,让学生经历公倍数和公因数概念的形成过程,加深对抽象概念的理解。
思考:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。
三、在教学中严格要求学生先用“列举法”教学“求两数公倍数与公因数”;在学生相对较熟练的时候尝试让学生直接说出公倍数与公因数;在此基础上适当介绍后面的阅读知识,但不要求学生使用。
四、在教学了用“列举法”“求两数公倍数与公因数”的知识之后,适当提高训练难度,将求“最小公倍数”与“最大公因数”合并训练。通过联系“最大公因数”、“最小公倍数”的知识,引导学生发现求两个数的最小公倍数和最大公因数的扩倍法等其它的方法。要求学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢,掌握较好。通过练习引导学生感悟、概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。
课后反思:
一、预习后的课堂教学,还要教,直接放手要出问题。
二、介绍一下短除法是有必要的。但不能直接按传统的教学思路以短除法求最大公因数和最小公倍数简单代替列举法。
三、应逐步鼓励学生把求最大公因数和最小公倍数过程想在脑中,直接说出结果。引导感兴趣的同学在课后探索其它的求最大公因数和最小公倍数的内容,适当提高学生的思维水平。
公倍数的教学反思13
一、吃透教材,选择合适的学习材料
本节课是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。
在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。本节课的意图是通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。但是,教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。本节课把原来铺墙砖的题目改为找两人的共同休息日来建立概念。体现了新课标的要求,学生的学习内容应该是现实的、有意义的、富有挑战性的.;有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;使学生感到数学就在自己身边。充分利用课堂中最有效的时间是前15钟,做好这段时间的教学,提高了学习效率。
二、吃透教材,确定准确的教学目标
教师主要围绕,让理解两个数的公倍数和最小公倍数的意义,通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化,渗透集合思想,培养学生的抽象概括能力这些目标展开教学。把本节课的重点应放在学生对数的概念的认识上,体现了新课标中46年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数的要求。小学生的生活实际问题的解决能力普遍较低,把运用公倍数与最小公倍数的知识解决简单的生活实际问题,定为本节课的难点。体现新课标中人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能的要求。
三、吃透教材,设计流畅的教学环节
小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。
1、利用情境引入新课,通过月历探索新知。学生在月历上找出4和6的倍数的日期,清楚形象的看到两个数的倍数关系。
2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。学生探索后,引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,用自己的语言梳理新知,使学生在环环相扣的教学进程中顺理成章的理解概念,把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念,沟通二者之间的联系。
3、创设问题情境,尝试应用,方法提炼。结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。
4、巩固练习、不断刺激,不断巩固提升。先让学会用最基本的方法求两个数的最小公倍数。再用这样的知识解决生活中的排队问题,用富有生活气息的情境,激发学习兴趣,再次打通生活与数学的屏障。接着是找生日,铺墙砖,让用数学方法来解释生活现象,感受到求公因数与求公倍数的联系。
4、学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
公倍数的教学反思14
上完了《最小公倍数》这节课,我的感受很多,收获也很多。反思其中的几点闪光之处,主要有以下几点:
1、情境的创设有效地激发了学生的学习兴趣,提高了课堂效率。
课前我就想,如果能让学生通过自己学习来寻找最小公倍数,深刻了解什么是最小公倍数,以及如何来计算,让这一切都由学生自主完成,那他们的记忆就会更加深刻。考虑到这是一节纯数学的课,课上全是抽象的数学化的知识,我就想能不能给学生提供一个情景来激发学生的兴趣。于是我创设了学生铺砖这个情景。让学生在这个过程中,用列举的方法找到了最小公倍数。然后以一条数轴为契机,小松鼠一次能跳2格,小猴一次能跳3格为情境,通过画一画、说一说得出它们从同一点往前跳,跳到第几格时会第一次相遇,第二次呢?以此来进一步提高学生对公倍数和最小公倍数的认识。最后,在肯定大家学习积极性的同时,又创设了我想带一部分表现好的.同学出去参加一项活动,可以分成4人一组,也可以分成6人一组,都正好分完,你知道我最少带了多少人吗?这样大大激发了学生的兴趣,让学生学的情绪高涨,思维时刻处于活动的状态中。
2、以旧带新,渗透转化思想
课堂中当学生体验到用找倍数的方法求最小公倍数比较烦琐时,适时地引出用短除法来求两个数的最小公倍数,因为在前面求两个数的最大公约数也是用短除来求的,短除法的方法是一致的,因此可以让学生在已有基础上探究,将新知识转化成旧知识学习。这节课重点也是让学生理解:为什么把这些乘起来就是最小公倍数了呢?在这一课的教学中可以更加深入的进行探讨,但感觉学生掌握的深度还不够,因此,在学习最小公倍数时,为什么乘最后的商时,还需进一步加强学习。
3、给学生充分的空间,在自读自悟中学习知识
教学时,我给了学生充足的空间思考问题,让学生在自感自悟中学习知识。长时间下来,学生才能养成良好的思维习惯,有的放矢的思考,有序的思考。
公倍数的教学反思15
一、让学生经历知识的形成过程。
本节课,我充分体现这一新课程理念。上课开始我设计了一个互动游戏:
1.让学生按号数先进行报数。
2.请号数是4的倍数的同学站到教室左边。号数是6的倍数的'同学站到教室的右边。(并把对应的号数填到黑板上)
3.为什么12号、24号、36号和48号两边都要站呢?说说你发现了什么?如此为数学提供现实素材,积累直接经验获得对公倍数、最小公倍数概念的直接体验,积累数学活动的经验。
二、精心设计练习,提高课堂有效性
我在设计练习题时,先按书中的内容针对重点、难点设计一些综合性练习题,以适当重复来控制学生对知识的掌握。设计练习内容的难易程度都有,必做题起点稍低,让学生能通过独立思考和教师的正确辅导,一次次地去获得作业练习的成功;选做题有一定难度,对差生不做要求,可让优生产生兴趣尽力去完成,做到“优生吃得饱、差生吃得了、中游赶得上、下游丢不了”,真正让全班学生练中有乐、练有所获。
【公倍数的教学反思】相关文章:
《最小公倍数》教学设计10-02
最小公倍数教学设计01-12
最小公倍数教学设计08-02
公倍数与最小公倍数教案10-17
找最小公倍数教学教案04-22
公倍数和公因数教案12-19
公倍数和公因数教案07-18
最小公倍数教案04-13
《最小公倍数》教案07-09