解决问题的策略教学反思(集锦15篇)
身为一名到岗不久的老师,我们的任务之一就是课堂教学,教学反思能很好的记录下我们的课堂经验,教学反思应该怎么写呢?以下是小编为大家收集的解决问题的策略教学反思,希望对大家有所帮助。
解决问题的策略教学反思1
由于刚刚听过青年教师评优课,课前认真阅读了其他老师对这一课的教学设想学习,仔细修改了课件,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也初步掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
三、培养学生的'探索精神和创新能力。首先,解决问题需要学生根据具体问题情境去主动探索,这本身就有利于培养学生的探索精神;其次,任何数学问题的解决,只有通过对已掌握的知识和方法的重新组合并生成新的策略和方法才能实现问题的解决。所以这个过程又是一个创新的过程,它不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
解决问题的策略教学反思2
今天教学了《解决问题的策略》练习课,昨晚让学生把P93第四题至第八题做在家作本上,从学生的作业情况来看,对这个单元的内容掌握的还可以,除了有几个学生对追击问题没有搞懂之外,所以在上课之前改变了按部就班的程序,开始重点讲了讲追击问题,然后出了两道变式题想考一考孩子们的反应能力。
1、阳阳和冬冬从同一地点反向出发,沿着环形跑道赛跑。阳阳每分钟跑340米,冬冬每分钟跑260米,经过2分钟两人第三次相遇,跑道一周长多少米?
2、一辆汽车长8米,一座大桥长1992米,这辆汽车以每分钟250米的速度过桥,这辆汽车从上桥到下桥一共用了几分钟?
结果第一题大概有十几个学生通过画图解决了,但第二题只有两三个人做出来。看来平时还要注重学生的思维训练。
今天教学了《解决问题的策略(行程问题)》,从预习情况来看,学生对列表格的方法比较钟爱,可能是觉得画图比较麻烦吧,所以新授就重点讲了如何画图,如何画好图。特别是如何把图画的比较标准一些,这对学生解决问题还是有很大帮助的。
这类问题类型比较多,新授的内容又太简单,所以花在练习上讲解的时间比较多。特别是追击问题,学生比较难理解,所以在课堂总结的时候,我让学生分别上台演示了相遇问题、相背问题、追击问题,我想,这样学生就有了更直观的`认识,对他们画图也应该是有很大帮助的吧。
今天教学了《解决问题的策略(行程问题)》,从预习情况来看,学生对列表格的方法比较钟爱。我想有两个原因,一是列表格的方法以前专门有学过,二是画图的方法比较麻烦。所以在新授的时候我重点讲了怎样画线段图,如何把线段图画的比较准确、美观。
虽然今天的教学内容并不难,只是相遇问题和相背问题,但在练习中却又生成出许多新的问题,如:环形跑道、追击问题等。而如果仅靠课堂上学的知识,学生是很难独立解决这些问题的,所以当出现新问题的时候,有很多学生不知从何下手,我只好请学生上台直观演示,效果还行。
明天的练习课应该把行程类问题整理一下,然后再加强练习吧。
解决问题的策略教学反思3
这一课时最关键的是在例一,因有对以前知识的复习,所以在掌握程度上必须把握得当,让学生明确使用的基本思路是怎样的,然后再大规模地开展策略的教学,让学生感知一一列举的优点!
对于例二,学生对于这里含有的找规律的知识掌握较好,因此容易上手,可以让学生明确掌握用表格的方法来实现一一列举的策略,后来证明这是对的`,用表格的方法,可以将一一列举的策略的优点发挥到最好,也让学生更容易接受。
解决问题的策略教学反思4
一、自己的上课反思
这次选择的是五年级的《解决问题的策略》,之所以选这一课,一方面由于六年级的新授课已经上完(复习课自己还没有足够的信心去展示),其次这课五年级上过一次,所以估计上起来会比较熟门熟路。上完之后,不敢说好,也不能说是不好,有缺陷有遗憾,也有比去年上时进步的地方,试着谈谈。
1、备了,但预设仍有不足
五一期间正式确定了上课题目并着手准备,因为有备过一次,所以备课过程总得来说还算迅速。这堂课的重点在于:让学生先摘录条件,再进行倒推。其实倒推学生或多或少都会,只不过不一定能把它上升到策略的层面上,因而最大的难点,就是能否让学生感受到整理信息的需求。课的流程设计上基本以书为主,就是第二道例题进行了改动略微增加了点难度。五一之后立马试上了一节,发现问题颇多,第一个,内容很大,两道例题加一道试一试,加上前面的知识准备,发现30分钟内搞不定。只好对知识准备开刀,本来希望用两个联系生活的例子帮学生引出倒推(一个时间,一个方向),可实际交流时发现太过耗时,而且设计的`也有些难了,所以进行了删减。还有一点,本意是想多让学生展示,虽然学生对倒推也有了一定的想法,但课堂上自己的提炼不够,所以学生没什么说法上的范例,说得有点磕磕绊绊。在赛课的前一天赶忙进行了第二次试上,同样还是有些问题,对学生了解不够,课堂展开更多还是依赖于我,没能依据的学生的提问进行。现在想来还是对学生的预设不够所致,他们什么地方会,什么地方不会或是会错,没全想到。当然最大的缺陷,没让所有学生都产生整理的需求,学生潜意识里是有这一点的,只是没全部挖出来。
2、引导了,但学生体验还不够
上课时借了五年级的班,难得一次借班上课,对于自己也是挑战。前两次试上时,真是完全没摸清楚学生,课堂上不是说得太多就是太少。正式上课这次,不得不感叹五3班的孩子还是很给力的,很多我没有做到位的地方都被他们补救了回来。自己的表现也比前两次强些,该挖和该引导的地方都或多或少地说到了,不过也许是范围撒的太大,所以很多知识点学生的体验是不够的,尤其在流程图整理这块,没能让所有人建立“先整理—再倒推”意识。如果让我再上一遍的话,我应该会再压缩一下前面的内容,把这一教学重点再突出些。这是一堂策略课,需要让学生体验策略的使用方法,才能感受到策略的应用价值,策略,是方法,更是思想,想渗透好确实不易。
二、听其他老师课的感受
由于课后赶着本班的教学及兼的科学课,下午才忙过来听其他老师的课。很可惜,王连连老师的课只听了一半,只有董玉清、徐莹颖两位老师的课完整听完。不过两位新人老师的课让我颇为震惊,可能以后在她们面前,真的不敢有多教了一年书的姿态。
1、董老师对教学内容及课堂的把握
董老师的课与我的想比,可谓是完全不同类型的课。计算算理本身并不好讲,低年级学生也不好带,但这两点董老师都做得不错。班级一上场,孩子们很有纪律性,看得出常规抓得较好。上课时孩子们举手积极,回答问题声音响亮,且话说得连贯、完整,让人感觉到训练有素,也说明老师平常给了学生很大发挥空间。计算课最重要的就是理解算理,这里老师预设充分,通过摆小棒、结构图的方法让学生充分动手动脑体验,问题的设置也紧紧围绕这一主题,教师目标明确,学生体验也到位,课堂效果非常好。这些可以说是董老师做到了,但我没有完全做到的地方。
2、徐老师对流程的设计及上课的状态
徐老师的课与我的课有一定的类比性。首先两节课都渗透了数学的思想方法,其次都属于中高年级的课。徐老师的课有两点让人印象深刻,首先课的流程设计非常的用心,而且全部围绕学生的问题展开,所以听下来,感觉到课总体上是为学生服务的。看得出老师课前做了充分的预设,不仅备了教材,还备了学生。课堂中间也不乏亮点,尤其是关于年龄的讨论环节可以称得上巧妙,每一个问题都精心设计过,突出了字母表示数方法中的变化与规律。另一点就是徐老师上课的状态,非常地有精神,表现地也很干练,课堂上没有什么多余的废话,课堂的展开也非常自然,有种老教师的感觉,令人佩服。
解决问题的策略教学反思5
本节课是苏教版六年级数学下册第六单元第一课时,内容是第71-72例一、试一试、练一练及练习十四的1-3题。本节课是在学生已经学习了用画图和列表,以及列举、倒推、替换和假设等策略基础上进行教学的,主要是让学生学会运用转化这一常见的、极其重要的解决问题的策略,通过转化能把较复杂的问题变成较简单的问题,把新知的问题变成旧知的问题。而转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。所以本节课的教学不以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。
基于此,我设计了以下六个教学环节:第一环节是“创设情境,导入新课”,这一环节教学例1,学生在比较两个不规则图形的面积时产生困惑,我及时引导学生运用已学过的知识来解决这一困惑,即引导学生去探索解决问题的关键是如何将不规则图形转化为规则图形,初步体验转化思想。第二环节是"回顾运用,感知转化",在本环节中我留给学生充分的空间,让学生从图形转化和计算转化两个方面回忆以前运用转化的策略解决过哪些问题,引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,以增强策略意识。感知转化无所不在,真正体验到转化的好处。 随后在第三环节是“观察思考,再探转化”,这一环节主要是教学“试一试”部分,把一个复杂的分数加法计算题结合图形从而转化为一个简单的计算,初步体验数形结合的思想,进一步探究转化。第四环节“及时练习,运用转化”中我改变了教材知识的呈现方式,把练一练和练习十四第2题的第(3)小题作为及时练习内容,使学生初步学会运用转化解决问题,巩固知识的同时体验成功的喜悦,激发继续学习的热情。第五环节“应用迁移,拓展深化”中通过学生的独立思考和合作交流利用转化的策略解决实际问题,达到巩固应用和进一步体验转化的目的。第六环节是“总结转化,深化思想”,本环节包含两个部分,首先让学生自己说说本节课的收获,再让学生欣赏“曹冲称象”和“司马光砸缸”两个古代智慧故事,激发了学生的`应用兴趣,使他们对使用转化策略解决问题充满信心。
课前设想总是美好的,但在实际的操作中,总会出现一些问题。 虽然整节课的设计都是围绕让学生去感知、探索、体验“转化”的策略,但上完这一课后,我感觉没有达到预期的教学目标。整节课下来,学生的收获偏重于教材和我所提供的一些关于转化的问题,学生的创造性没有得到很好的发挥,很难在以后的学习中把转化这一策略应用到新的问题上面。主要问题是学生对“转化”策略的体验不够,课堂上我没有很好地设计一些问题让学生思考:为什么在解决一些数学问题时需要用到转化的策略?在运用转化策略的过程中又有哪些具体的方法???很多时候都是作为教师的我在“唱独角戏”,一个人在那儿说着“转化”的优点,而学生并没有所想的那样对转化有认同感。并且课堂上我对学生的启发提问,知识与知识之间的过渡语言,对学生回答完问题的评价语言显得贫乏苍白。此外,对课件的操作也存在着一些问题,很多时候学生从我操作中的“蛛丝马迹”中获取了问题的解决方法而不是通过思考主动利用转化策略去解决。这是对整个教学流程的把握不够自信和熟悉的表现。
一节课下来,静心沉思 ,积累成功的经验,思考失败的原因。总之就本节课而言,增强学生的转化意识,提高学生转化的技能,让转化思想扎根学生心田,这样学生的思维才能更灵活开放。符合就是成功,不符合就是失败,我会在以后的教学中不断改进。
解决问题的策略教学反思6
“一一列举”的策略不是完全的新知识。在小学阶段虽然安排在五年级学习,但是在各册教材中都有渗透,这种解题的策略对学生来说不应该是陌生的,所以,我布置了四道预习作业作为本节课的铺垫1、把7个苹果随意分成2堆,有哪几种分法?2、《科学世界》、《七彩语文》、《数学乐园》,从中任意订2本,有多少种不同的订法。3、解放军叔叔轮流换岗,第一次换岗时间是7:00,第二次是9:00,第三次是11:00,第四次是( ),第五次是( ),第六次是( )。4、用10根火柴棒摆一个长方形,有几种摆法?请你摆一摆,画一画。
从预习作业来看1、2、两题列举方法多样,第四题好多同学把10看成了长方形的周长。“一一列举”的策略不是一一列表。教学中可以用多种方法来解决问题,分类列举,用文字,用字母,画图等等,表格只是其中的`一种方法,所以在教学中,我们引导学生先尝试用自己的方法解决问题。学生表达出了多种形式,有列式的,列表的,用长宽对应书写的。然后教师再向学生推荐表格列举。通过有序与无序、重复与遗漏列举的对比,让学生感悟列举要性。
寻找到突破口,找到“从那里想起?”。而后让学生体会“像刚才这样把事情发生的可能按一定的顺序,有条理地列举出来,这种策略就叫做一一列举”。为了上好这节课我精心研读教材,了解学生,和同伴反复交流,教学效果较为明显。
解决问题的策略教学反思7
学生在例题1中初步体验了替换的策略,例2要求学生提出假设,然后来验证自己的假设是否正确,由于学生已经掌握画图、一一列举等解决问题的策略,提出的假设可能是多样的,鼓励学生采用自己喜欢的方式,采取灵活多样的策略。课后,我对本课时有以下几点感触:
第一,学生解决问题方法日益多样化。一部分学生假设10只都是大船或都是小船,采用图画枚举的方式对上述设想进行调整之后。一部分学生选择了按课本第91页的列表法进行调整。另外有两种情况出乎我的意料之中:一是一部分学生采用了大船从0条到10条一一检验的繁琐方法;还有学生设大船为x条,则小船为(10- x)条,列出较复杂的方程: 5x+(10- x)×3=42。虽然这个学生没解出这道方程,但学生解决问题的多样性,思维的活跃却令我倍感欣慰
第二,学生已有在众多策略中选择最优化策略的意识萌芽,但还需老师引导学生关注策略的实效性。学生根据自身个性特性的因素可能在众多策略中选择适合自己的策略,但也有一部分学生用一种策略解决问题之后,就不愿再尝试新的方法,有一部分学习较认真的学生能进行多种方法的尝试。部分学生能在解决实际问题的过程中体会到各种策略有不同的特点,各有其优点或局限性。当时我根据这一部分学生的热情,帮助引导学生了解各种策略的特点以及在不同情况下应用的情形。如在学生用图画枚举之后,我相机提出如果船数不是10条,而是20、30、40条甚至更多,还采用图画枚举的方式有什么不方便的地方呢?你们还会选择图画枚举的方法吗?当学生认识到图画枚举方法的局限性时,在讨论之后一致得出结论:当数据较大时,采用图画枚举法效率较低,最好还是选择列表法。让学生的思维从形象到概括过渡,发展学生思维的开放性与灵活性。再如在用列表法解决问题时,我提出:按常规船的配臵方法有11种,从0条大船(或小船)到10条大船(或小船),你们认为是从0条大船(或小船)开始,按顺序列举还是教材假设大小船各5条,哪种方法更快捷?为什么?学生懂得在选择解决问题的策略时,可以选择最有实效的策略,最优化的策略,可以提高解决问题的速度和效率,确保正确率。教材上往往主张解题方法的多样性,主张学生用自己喜欢的'方法,我个人认为在尊重上述主张的同时,可适当引导学生注重策略的最优化和实效性,与上述主张并不相悖。
第三,学生的有序思考的习惯已经初步形成,但适当提醒还是有必要的。在学生掌握一一列举法,图画枚举等解决问题的策略以及在平时的学习过程中,学生已经认知有序思考,有了初步的了解和应用。但采用假设法解决问题的策略时,由于绝大多数假设都不是问题的答案,学生在假设之后,要进行一定的调整,进行相应的替换,在学生进行调整和替换的过程中,由于教材所选用的数据都偏小,部分学生用口算或凭直觉认为是某某数,就直接用某某数试算,而不是按一定的顺序来进行,出现重复或反向调整。有些同学侥幸一步就假设成功,所列表格中就只有一行数字,既是初始假想,又是最终答案,可能会忽视有序思考的重要性。我认为有必要提醒一下学生:有序思考不仅是检验假设的方法,也是一种重要的数学思考方法和数学素养。
本课时教材选材生活化,有利于学生运用多种策略解决实际问题,学生思考的空间大了,解题的方法灵活多样,例题和习题都有多种方法。但我认为六年级是小学向中学的重要过渡阶段,到六年级阶段,小学生的抽象思维能力获得了一定程度的发展。本节课之后,我总觉得教材上画图假设、列表假设比较直观,利于学生的思考,但学生的思维培养不能总停留在形象层面上。我有这样的感觉:本单元选材可能形象性有余,概括性不足。可否在“练一练”或习题中选用一道习题数字较大,让学生感知认识到用计算的方法能更快更准确地检验假设,使之体会到抽象思维的优越性,为进入初中的学习打下坚实的基础。
解决问题的策略教学反思8
“解决问题的策略”这一课,可以说在整册教材中是最难的。它是在“找规律”的基础上来学习的,在学习“找规律”这一课时,学生已经初步接触了一些解决问题的方法,列举法便是其中之一。而这一单元,主要是让学生认识列举法,会用这一方法解决一些问题。
教材第一课时主要是让学生通过具体实例来认识“列举”这一方法。但一出示课题,学生便对“策略”二字产生了疑问,于是我便加以解释,在教学中也以“方法”代之,这样很快使学生消除了疑虑。而例1并不困难,学生在我的讲解下都能理解,并且在表格上显示则显得更为清晰。紧接着我将我的问题抛给了孩子:“同学们,王大叔非常感谢你们的帮忙,你们说的这四种方法都很好,王大叔都不知该如何取舍,你们谁愿意再一次帮助王大叔?”孩子们有的说选长8米宽1米的,有的说不好,应选长7米宽2米的,有的说选长5米宽4米的,当我问他们为何这样选时,有的孩子说不出来,只说他认为是这样,还有的孩子说算过这四种方法的面积了,觉得应该选面积最大的',这样在里面养的羊多。我将赞许的目光投给了这孩子。的确,在我看来,让他们自己去发现比我直接给他们答案要好的多。紧接着我又丢出一个问题:“如果这方法很多,老师无法一一去计算每种方法的面积,那该怎么办呢?”孩子们在我的引导中发现了长和宽的差与面积之间的关系。
磨课的过程我有以下几点体会:
一、想上好一节课真不容易。
这次比赛时间很紧,再加我学校工作很忙,准备时间有限,从抽签定下教学内容的那一刻就一直在构思,教学设计也是反复修改变得了好几次。既然是比赛就要注重个方面的设计,比如导课的方法、情景的创设、练习的选择……总之新课改的要求和标准你都要体现出来,要不你凭什么拿名次?但是,当我站在讲台上的那一刻,我突然意识到,不管你采用什么方法,最重要的一个目的就是看孩子有没有从这一节课中学到东西,其实就是我们所说的课堂实效,有了这个想法我反而不紧张了,我就一个目的,让孩子们学会用“一一列举”方法解决生活中的实际问题。是呀!抱着一颗平常心上课比什么都重要,我更应该关注孩子而不是名次!
二、备自己的课,才能上出自己的特色。
教者不同,学生不同,相同的教案会上出不同的效果。在本节课的设计上,我尽量从学生熟悉的实际生活入手,引导学生步步深入理解掌握一一列举这样一种新的解题策略。同时,根据自己的理解我认为,书上片面强调列表列举尤其偏颇之处,本课的重点在于让学生掌握一一列举这样一种解题策略,而对于列表这样一种方法,在某些题目的列举过程中如果运用会显得较繁,而运用其他的方法则能更迅速,更明了。因此在课堂上,我在引导学生认识表格、理解表格的同时,允许多种表示方法的存在,甚至鼓励运用部分更简洁的方法。
诚然,不管你课前准备的和设计的如何好?课堂的主体毕竟是活动的人,想全面的掌控各种各样的情况显然也是不现实的,课后我反思甚深:
一、没有充分的了解学生的学习状况。因为此教学内容和前一单元《找规律》有内在的联系,学生上一单元还没完全结束的情况下讲授本课时,自然是优等生的课堂而不是每位学生的课堂,我觉得自己在给为数不多的几个优等生上课。
二、没有把“一一列举”这种解决问题的策略的方法灵活的教给学生,在处理例二时过于粗糙,时间的把握不足。
三、联系效果没有很好的体现出来。一是时间关系,而是课前没有及时调试好设备。
解决问题的策略教学反思9
苏教版教材中单独把解决问题的策略作为一个教学单元。在执教过程中有许多成功经验,也有许多迷茫,偏颇之处,不能不引起我们的反思和讨论。
一、传授策略不等于教授具体的解题方法。
案例:苏教版第十一册解决问题的策略-替换一课,课本以和倍问题作为例题,让学生体会使用替换的策略解决能便于解决有两个未知量的题目。有部分教师把课堂设计成和差,和倍问题的练习课,把教授如何解决该类问题作为课堂重点,使课堂失去生命力。
其实十一册第一单元已教授了列方程解决该类问题的方法,如果把该节课定位在训练解题技巧上,是对教学内容的简单重复。学生的思维仍停留于如何解题,没有提升到利用两个未知量之间的关系统一为一个未知量是一种策略的高度。不能形成更抽象的数学思维。
解决问题的策略重点应是让学生在解决问题的基础上体会到各种解决方法的.共同点,体会方法中渗透的数学思维。解决问题的策略如列表,画图,一一列举,替换等实际上是数学思想方法而不是解题技巧。因此,解决问题的策略的课堂应该把设计的重点放在如何让学生体会这些策略有什么共同点,感受这些策略为解决问题带来方便,重在体会。
另一方面,学生的程度是不一致的,有的学生可能上新课前已经掌握了解决该类问题的具体方法。有的学生可能需要几节课才能掌握该类问题的解题技巧。因为这些例题本来就是由奥数题改编而来。把课堂的重点定位在体会策略的优势是使不同程度的学生都有所收获。
例如本案例,课堂开始我以曹冲称象的故事为导入,后进生如果感受到替换的策略能把生活中的难题变简单,他就有收获。而学习较好的学生能体会数学策略能应用于生活,他也有所收获。只有让学生都感受到数学的魅力,数学课的生命力才得以延伸。
二、解决问题的策略是连贯的而不是独立的。
本节案例其中一个教学难点是让学生体验如何替换。如果每道题都需要通过实际操作体验不仅费时,而且受课堂条件限制,许多操作将不能进行。
在教授本课时,我采取了结合画图,倒推等策略帮助学生体会如何替换。学生已经掌握了画图等策略,在课堂上只要适当点拨,能把题目的情景以线段图、实物图、数量关系式等方式呈现,学生通过多种的呈现方式,能对题目有更全面的理解,对替换的过程的认识就更深入。
例如:1个大杯和6个小杯, 大杯的容量是小杯的三分之一,学生可以通过以下方式呈现
学生1: ∵3小杯=1大杯
1大杯+6小杯=3小杯+6小杯=9小杯
学生2 小杯:
大杯:
画图的方式更能体现学生的思维过程,学生通过观察其他同学的示意图更容易理解其思路,促进生生互评,使课堂更具生命力。
三、解决问题的策略应回归生活
有部分学生认为,解决问题的策略是高深莫测的,是难以理解的,这和教师长期误解该课的教学重点有很大联系。实际生活中我们也常用到这些策略解决问题,如果教师教学时适当从身边的例子引入,以生动的故事引入,更能激发学生学习的欲望。
以本课为例,我以曹冲称象的例子引入,学生在故事中体会到策略源于生活,而且不难理解和操作。最后我还以老师在麦当劳买套餐的例子让学生利用替换的策略解决问题。
例2 李老师和朋友买了一份套餐: 2只鸡翅+1杯可乐=16元
已知可乐的价格比鸡翅多1元,李老师吃了一只鸡翅该付多少钱?
从学生熟悉的麦当劳套餐引发数学思考,学生的积极性更高,对策略的学习更有归属感。
解决问题的策略是苏教版教材的其中一个亮点,只要教师利用得当,学生思维可以得到更大提高。通过反思教学我们获得前进的动力,愿我们养成反思的习惯,愿我们能在反思中摄取营养,不断进步。
解决问题的策略教学反思10
本节课是在学生已经学习了用画图和列表,以及列举、倒推、替换和假设等策略基础上进行教学的,主要是让学生学会运用转化这一常见的、极其重要的解决问题的策略,通过转化能把较复杂的问题变成较简单的问题,把未知的问题变成已知的问题。而转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题解决,更有益于思维的发展。所以本节课的教学不以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。
为此我在教学中设计了以下几个环节:第一环节是“创设情境,导入新课”,这一环节教学例1,学生在比较两个不规则图形的面积时产生困惑,我及时引导学生运用已学过的知识来解决这一困惑,即引导学生去探索解决问题的关键是如何将不规则图形转化为规则图形,初步体验转化思想。并请学生拿出准备好的练习纸进行转化验证。
第二环节是"回顾运用,感知转化",在本环节中我留给学生充分的空间,让学生从图形转化和计算转化两个方面回忆以前运用转化的'策略解决过哪些问题,引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,以增强策略意识。感知转化无所不在,真正体验到了转化的好处。在练习中,我把练一练和练习十四第2题的前两小题作为及时练习内容,使学生初步学会运用转化解决问题,巩固知识的同时体验成功的喜悦,激发继续学习的热情。第三环节是“观察思考,深入转化”,这一环节主要是教学“试一试”部分,把一个复杂的分数加法计算题结合图形从而转化为一个简单的计算,初步体验数形结合的思想,进一步探究转化。
课前设想总是美好的,但在实际的操作中,总会出现一些问题。虽然整节课的设计都是围绕让学生知、探索、体验“转化”的策略,但上完这一课后,我感觉没有达到预期的教学目标。整节课下来,学生的收获偏重于教材和我所提供的一些关于转化的问题,学生的创造性没有得到很好的发挥,很难再以后的学习中把转化这一策略应用到新的问题上面。主要问题是学生对“转化”策略的体验不够,课堂上我没有很好地设计一些问题让学生思考:为什么在解决一些数学问题时需要用到转化的策略?在运用转化策略的过程中又有哪些具体的方法?……很多时候都是作为教师的我在“唱独角戏”,一个人在那儿说着“转化”的优点,而学生并没有所想的那样对转化有认同感。并且课堂上我对学生的启发提问,知识与知识之间的过渡语言,对学生回答完问题的评价语言显得贫乏苍白。
总之就本节课而言,增强学生的转化意识,提高学生转化的技能,让转化思想扎根学生心田,这样学生的思维才能更灵活开放。符合就是成功,不符合就是失败,我会在以后的教学中不断改进。
解决问题的策略教学反思11
本课是在学生学习了用列表的策略收集和整理信息,用从条件或问题想起的方法分析数量关系的基础上教学的,本课系统研究用画图的方法收集、整理信息,并在画图的过程中,分析数量关系,用“画图”的策略解决相关实际问题,帮助学生积累数学活动经验,感悟直观化的数学思想方法,发展几何直观,提高分析、解决问题的能力。
在教学例1前我先出示2题“看图解答”,引导学生看图说出问题、条件和数量关系,再列式计算,此环节的意义是通过从图中整理条件引导学生体会“图”的好处,同时也勾起了学生脑海中关于“画图”的回忆,也为例1的教学做好铺垫。例题1是用纯文字的形式出示的,由于题中的条件比较多,使学生在对文字的阅读理解中遇到了困难,对题中数量关系的理解也有些模糊,不过借助课一开始的“前置性练习”,很多学生能够想到用画线段图的方法来解决,但如何准确的在线段图上表示题意却有一定的困难,这时老师给出一条线段表示小宁,给学生一个“支点”,再让学生画另一条线段表示小春,并说说为什么要这样画,在画好了主体部分后让学生把题中的条件和问题在图上表示出来,从而完成一幅完整的线段图。在画好图以后,教师就要诱发学生“看图”进行推理,找出数量关系并进行分析,确定基本的解题思路,化图形为算式。本课中的例题不同与一般的简单的实际问题,由于其条件、数量关系的复杂性和抽象性,适合用画图的策略来解决,例题1呈现的是两个数量的和和差,通过假设让两个数量相同,期间通过演示使学生看到总数的变化,形象的展示了解题思路,加快了学生的理解速度,之后学生自主解题,板演并进行讲解,如此在观察中推理,在计算中比较,在比较中发现。最后的回顾环节,意在帮助学生已经积累起来的画图述问题、分析问题的'经验上升到策略的层面,进而获得对策略的深刻的体验。
值得一提的是学生对策略的掌握要经历从模仿到逐步内化的过程,“试一试”是对画图策略的强化,教师要进一步放手,“想想做做”重在引导学生内化策略,“画图”作为解决问题的一种常用策略,是学生通过画图不断解决问题的过程中逐步感悟获得的,本课学习,画图不是最终目的,不可能仅凭一两堂课就能使学生掌握,画图是一种中介,是为了学生更好的学会思考,随着学习的深人,学生所遇到问题的类型在不断变换,而解决这些不同类型问题的策略却始终如一,学生对画图策略的运用越来越娴熟,对策略的理解也越来越深刻,从而帮助积累更多的解决问题的经验,感受策略的价值,提升数学思想方法。
解决问题的策略教学反思12
本节课打破常规教学,在原来教材的基础上改编教材,充分利用学生已有的经验,在“玩”中学,增强了数学的趣味性。
一、情境创设非常有效
通过笑话,让学生初步感知倒过来的意思。以“生活中的数学”引入到“教材中的数学”。老师为学生提供的素材密切联系了现实生活,运用学生关注的和感兴趣的实例作为知识的背景,激发了学生的求知欲,使学生感受到数学就在自己的身边,并且能与新授知识衔接得非常紧密。
二、教学重难点把握准确,处理得当
本节课的教学重点是指导学生学会用摘录条件进行整理的方式表示出已知条件,然后学会用“倒过来推想”的策略来解决实际问题。在游戏中,让学生模仿老师的情况,先扶后放,分散难点,让学生通过示意图初步感知“倒过来推想”的思维过程,把抽象的推理过程,外化成具体形象的数学符号语言,便于学生对新知的接受。
其次是例2的教学,由于例1的渗透,教学例2时,学生对于条件的摘录和整理有了大概的认识,显然,学生的这种认识还是模糊的,不真切的。于是,老师对条件整理进行了指导,指出小明的邮票变化有两个过程,让学生自己动手整理条件,并适时让学生进行讨论交流,进一步加深对“倒过来推想”这种解决问题策略的思考,在相互交流中逐步建立起“倒推方法解决问题的思维方式,然后师生共同经历摘录、整理的过程,将模糊的认识一点点清晰明朗。在主动探索和交流中感受“倒过来推想”策略对于解决特定问题的思维方式和自身的优势。
第三,对于“练一练”题目的处理,我对教材的把握很到位,对学生学情了解也很深入,题中“小军拿出画片的一半还多1张送给小明”学生很难理解,这里也是教学的一个难点,我特别注重加强指导,举例让学生理解“一半还多1张”的意思,重视对“倒过来推想”的`思维过程的训练,关注学习结果更关注学习的过程,让学生体会运用所学知识解决问题的成功感!
三、适度的拓展延伸,激发学习热情
我选择了一道书中的思考题,以李白喝酒为题材的一道算题,进一步体会这种倒过来推想的解决问题策略的优势,丰富了学生对问题解决策略的认识,更让学生体会到运用所学知识解决问题的成功感!
解决问题的策略教学反思13
本课是苏教版五年级上册的《解决问题的策略—— 一一列举》。在此之前学生已经学会用列表和画图来解决问题,对这两种策略解决问题的价值已经有了体验和认识, 而一一列举也是我们生活中解决问题时常用的策略之一,同时在列举的时候有序地思考,做到不重复、不遗漏,对发展思维也很有价值。本课的教学重点就是使学生学会用一一列举的方法解决生活中的实际问题。在本节课教学中,我觉得应紧扣以下三个方面:
1、引导学生认真审题,在理解题意后明确列举的目的。
在教学例1“用18根1米长的栅栏围成一个长方形花圃”,例2“订阅下面杂志,最少订阅1种,最多订阅3种,有多少种不同的订法?”后,我均安排了审题的环节,例1问“从这句话中知道了什么数学信息?”,例2问“你是怎样理解‘最少订阅1本,最多订阅3本’的?”引导学生通过认真审题明确例1是要找出长方形所有不同的围法。例2是要找出订阅1种或2种或3种杂志的所有不同的订法。让学生在理解题意后明确列举的目的,把每种答案都找出来,就需要一一列举。
2、探寻解决问题的途径,找突破口以弄清列举的内容。
出示例2后问“想想‘最少订阅1种,最多订阅3种’是什么意思?”既是引导学生认真审题,也是帮助学生找到解决问题的突破口,让学生明确要找出所有不同的订法,必须知道订阅1种,订阅2种,订阅3种杂志各有几种不同的订法。
3、借助不同方式列举,在交流合作中学习列举的`方法。
通过例1、例2的教学让学生展示用文字叙述、字母替代后列举和列表格几种不同的列举方法,通过比较让学生感受到用列表的方式进行有序的列举,简洁明了,答案一目了然。特别是例2这样需要进行分类列举的,用列表格的方法操作起来比较简便,答案一目了然,且不重复也不遗漏。同时在教学中对表格的生成过程也给学生一个完整的印象,让学生初步学会借助表格进行有序列举。“练一练”我出示“一张靶纸共三圈,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?”这题是一道开放题,可以借助不同的方法进行列举,而列表并不是最好的方法,我启发学生:“可以借助列表的方式,也可以想想有没有其他比较好的方法。” 并让学生分小组交流合作,使学生在交流合作及教师的引导下最终找到最佳方法——计算列举,从而使学生感受列举方法的多样化。
课后,结合评课老师的详细评价和指导,我回过头来细细反思了整个教学过程,认识到了这节课中自己存在的许多不足之处。
1、我忽略了一个重要的问题,那就是这节课的重点和难点是使学生能有条理的一一列举,并进行分析,能用“一一列举”的策略解决实际问题。应该及时带领学生:“想一想,我们先找宽是几米?”再让学生按有序的顺序,把书上的表格填写完整。这样在解题的过程中,学生就能深刻感受到运用一一列举这一策略的过程以及价值,达到预期的教学目标和教学效果。
解决问题的策略教学反思14
转化是指把一个数学问题变更为一类已经解决或比较容易解决的问题,从而使原问题得以解决的一种策略。所以,转化是一种常见的、极其重要的解决实际问题的方法。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。下面就解决问题的策略(转化策略)这一单元教学谈谈自己的得失:
一、感悟转化
运用转化的策略解决问题的关键是确定转化后要实现的目标和转化的具体方法。通常是把新的问题转化成熟悉的、能够解决的问题,把非常规的问题转化成常规的问题等,但要根据问题的具体情况具体分析。由于转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关。所以在开始的图形转化中,我放手让学生从不同的角度来理解、进行比较,感悟转化策略的优越性。
二、体验转化
策略不能直接从外部输入,只能在方法的实施过程中通过体验获得。体验是心理活动,是在亲身经历的过程中获得的意识与感受。例2在解决较复杂的分数问题时应用转化策略,进一步体验转化的意义。有利于学生在体验策略的同时,归纳和总结具体的操作方法,使学生对面积问题中的转化策略有一个完整、系统的再体验和升华。这不仅从数学思想层面提升学生的素养,而且更从解决问题的具体方法上面给学生以丰富的经验积累。具体方法的丰富反过来又深化了对转化策略的认识,这样形成的策略才能深深扎根学生的'心田,才具有方法论意义上的指导、调控作用。
三、反思转化
策略的有效形成必然伴随着对自己行为的不断反思。在教学的过程中,及时地引导学生对自己解决问题的过程进行反思,有利于提高学生对自身形成策略过程的认识,从而也更加有利于学生加深对策略的进一步理解。在学习过程中,学会合作交流,经常反思,不断调整,是一种高层次的认知能力,因此我在本节课教学中,充分关注学生的自我评价与回顾反思等习惯的形成。
解决问题的策略教学反思15
“解决问题的策略”教学片断与反思
新课标提出要重视培养学生“形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。”如何践行这一理念呢?下面结合苏教版国标本五年级上册P63“解决问题的策略”例1的教学实践谈点粗浅的认识:
教学片断
师:王大叔想用18根1米长的栅栏围成一个长方形羊圈,他会怎么围呢?
(出示例1)
师:这句话中告诉我们什么信息?
生:这个长方形羊圈的周长是18米。
师:猜想一下,他会怎么围呢?
生1:用6根栅栏做长,3根栅栏作宽。
生2:还可以用8根栅栏做长,1根作宽。
师:你们是怎么想的?
生:要围成一个长方形,就要知道这个长方形的长与宽,根据条件知道长方形的周长是18米,可以知道长与宽的和是9米。
师:有没有不同的想法?
生:我是摆出来的,用8根栅栏做长,1根栅栏作宽。
师:同学们的想法都有道理,但现在王大叔思考的问题却是怎样围面积最大?你们能帮他解决这个问题吗?
生3:应该选长为8米,宽为1米的长方形。
师:为什么呢?
生:我觉得面积最大,它的长和宽就应该最大。
生4:不对,我觉得应该选长是5米,宽为4米的长方形。5×4=20,8×1=8,20比8大。
……
师:到底怎样围面积最大?光靠这样简单的猜想和无谓的争议是不够的,你们有没有更好的解决办法吗?
生:我觉得应该把各种情况的长方形都算一算,就知道哪种面积最大了。
师:前面我们学过列表的方法整理数据,现在就请大家用列表的方法把各种情况都整理一下,再算一算。出示下表:
长(米)
宽(米)
面积(平方米)
(学生列表整理,计算汇报,教师把相应数据填入表中)
生:我们发现长5米、宽4米的长方形面积最大。
师:刚才大家用列表整理数据的办法验证了大家的猜想,可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发。现在大家再次观察一下上面的表格,你有什么新的.发现?然后在小组内相互交流交流。
生:我知道了周长相等的长方形,面积不一定相同。
生:我觉得长方形的长和宽越接近时面积越大。
生:我发现长方形的长越大,宽越小,面积就越小。
师:这是为什么呢?同学们能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?
生:老师,我明白了当长方形的长越大,宽越小,围成的长方形就越扁,它的面积就越小,如果长为9米,宽为0米,这个长方形的面积就为零了。
生:老师,还可以围成更大的面积,只要把两根栅栏都平均剪开,这样就可以围成一个正方形了,它的边长都是45分米。
师:这是一个新的发现,这个发现有没有道理呢?相信大家能得出正确的回答……
教学反思
“策略”的习得不同于知识与技能的掌握,它对学生的数学学习提出了更高的要求,也成为我们开展新课改实践的新课题。纵观本课例的教学过程,有下列启示:
1、凸现问题的探究价值与开放性——形成策略
策略的形成首先源于什么样的数学问题,而什么样的数学问题又影响着什么样的解决策略。教材上原本的设计是“围成的羊圈长8米,面积是多大呢?”教者在执教时将之巧妙地改为“王大叔会怎么围呢,怎样围面积最大?”比较两者的提法,显然后者的提法更富有探究价值,更具有开放性。正是源于问题的挑
战性,学生的学习兴趣盎然,思路放得开,能积极地尝试各种不同的策略进行探究,猜想验证、画图、列表等不同的问题解决策略自然而然生成。
2、紧扣“数学思维发展过程”这个学习活动核心——优化策略
标准提出,无论是什么样的问题解决策略的产生,都必须以“观察、思考、猜测、交流、推理”等富有思维成分的活动过程为其载体。本课例中教者紧紧扣住“数学思维发展过程”这一核心,适时地引领着学生的思维不断攀爬提升,不断提升策略选择的思维品质。如出示问题后,教者提出“猜想一下,他会怎么围呢?”引导学生从数学的角度分析问题、形成策略;当学生对各种围法进行争议时,教师提出“光靠这样猜想、争议还不够,你们有没有更好的解决办法吗?”逼着学生另辟蹊径,进行策略改向;在学生以为顺利解决问题后,教师又提出“可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发”,引导学生开展交流与评价,进行策略反思。这样,一步步地引导学生用数学的眼光提出问题、理解问题、解决问题,发展思维,优化策略。
3、尊重学习个性,彰显创新精神——发展策略
列表收集整理信息,是本课例要求学生掌握的一个基本策略,也是一本课的重点,但教者在教学活动中充分尊重学生的个性特点,基于此又不局限于此,让学生在体验不同的策略过程中个性得到张扬,从而激起创新的火化。比如,教者在学生提出不同的围法后,让学生大胆地直觉“猜测一下,哪一种围法面积最大?”再如,学生通过列表验证了猜测解决了问题,教者却未停留在问题解决的结果上,而是进一步引导学生“能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?”这样数形结合,进一步挑起究其竟的心理冲突、不满足的欲望,为形成富有理性的数学思考积累经验与感悟。
【解决问题的策略教学反思】相关文章:
解决问题的策略教学反思05-11
《解决问题的策略——假设》教学反思03-10
解决问题的策略教学反思15篇01-03
解决问题的策略教学反思(精选15篇)04-01
解决问题的策略教学反思(15篇)03-18
解决问题的策略教学反思(汇编15篇)03-20
解决问题的策略教学反思(集合15篇)04-14
解决问题的策略教学反思优选[15篇]06-28
解决问题的策略教学反思合集15篇04-04