当前位置:9136范文网>教育范文>教学反思>《三角形的内角和》教学反思

《三角形的内角和》教学反思

时间:2024-08-23 15:36:10 教学反思 我要投稿

《三角形的内角和》教学反思(集合15篇)

  身为一名到岗不久的人民教师,我们需要很强的教学能力,借助教学反思我们可以学习到很多讲课技巧,那么问题来了,教学反思应该怎么写?下面是小编为大家收集的《三角形的内角和》教学反思,欢迎阅读,希望大家能够喜欢。

《三角形的内角和》教学反思(集合15篇)

《三角形的内角和》教学反思1

  “合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。

  一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。

  二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。

  三是进行总结强化了学生对结论的.理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。

  《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力.

  “问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。

  本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。

  在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。

  最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。

《三角形的内角和》教学反思2

  这节课以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”地学习到新的知识。让学生经历观察,实验,猜想,验证等教学活动过程,培养他们的合情推理能力和初步的演绎推理能力,能有条理地,清晰地阐述自己的观点。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

  我在本节课的教学中,通过猜想,验证的方法,引导学生思考,激发学生的学习兴趣。

  学生在问题面前是退缩还是前进,要看教师如何有效德指引。我预先为每位学生准备了一些不同的三角形,让他们经历观察,实验,猜想,验证等教学活动过程,同时提出俩个问题:第一,你选用什么三角形,采用什么方法来验证?第二,经过操作得到了什么结论?学生分小组对大小不一的三角形进行验证,经历量,拼,折等方法来操作,从而得到“三角形的.内角和是180度”这一结论。整个过程学生是自主的,积极的,通过操作,思考,反馈等过程真正经历了有效德探究活动。

《三角形的内角和》教学反思3

  一、设计思路:

  这节课是上“三角形内角和”,因为学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出一块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°,再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的`安排上,注意练习层次,共安排三个层次,逐步加深。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  二、教学反思

  这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

  但在学习活动的过程中,首先我觉得语言不够生动、连贯,声音也很小。其次,学生在进行操作活动前,我也没有明确说明操作方法,使学生不理解操作的用意,也没有让学生在操作中真正证实“三角形的内角和是180°”的结论。最后,对三角形内角和的归纳也没有完整,等等

  总之,在这节课中存在着很多不足,今后我将花更多的时间在课堂教学方法、策略的研究上,使自己不断进步。

《三角形的内角和》教学反思4

  笔者在执教四上数学时,接到数学片开课的通知,反复思量最后选择了四下的《三角形的内角和》这一教学内容。一开始有的老师认为不可以,因为四下的《三角形的内角和》这个内容之前需要先上三个内容,即:认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边。如果给四上的学生上这个内容就违背了教材内容编排的有序性和知识的连续性。但是,难道一定要了解了三角形的特性,对三角形进行分类,知道三角形的三边关系之后再来研究三角形的内角和?难道就不能在学生对三角形有一定的感性认识的基础上,学习了角的分类和会量角之后,让学生去探究三角形的内角和进而研究多边形的内角和?最后经过反复思考,笔者作大胆的尝试,最终还是选择了这一教学内容。因为我们不能过于迷信我们的教材,不能盯死一套教材,不能过分的依赖教材。正如开头时讲到的,教材是滞后的,生活是现实的,我们教师则应该勇于探索,敢于实践,充分发挥教材的优势,把握教材的体系,做教材的开拓者。

  新一轮基础教育课程改革,改变了课程内容难繁偏旧和过于注重书本知识的现状,赋予教师更多的权力,教师不仅仅是课程的实施者,同时还是课程的开发者。而把握教材提出自己的教学目标和教学重难点是对一个教师最基本的要求。新课程背景下的数学教师要转变观念,不能成为教材的奴隶,而要对教材内容进行开发,变教材是学生的世界为世界是学生的教材,与学生共同讨论、探索,在不断的积累中形成开放而充满活力的课堂。

  在实验教科书四年级上册数学第二单元《角的度量》的学习过程中,学生已经学会量角,知道了角的分类,于是笔者灵活的处理了教材,在学生对三角形有一定的感性认识,刚学会了量角以及对角的分类有了一定的认识的基础上制定了新的教学目标: 1、在学生已有的认知基础上,让学生经历量一量、拼一拼等数学活动验证三角形内角和是180°,并会应用这一知识解决四边形的内和角。2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重点是引导学生用量、撕、拼等方法验证三角形的内角和是180度。教学难点是引导学生通过自主探索来得出任意三角形的内角和等于180度,进而利用这个知识来解决四边形的内角和。多次

  试教下来,发现对教学目标的定位是比较明确的,重点放在让学生体验验证三角形的内角和等于180度这一数学探究过程。但对于教学重难点的把握是经过反复修改而形成的。因为,这一内容如果只是让学生知道三角形的内角和那么就没有深度,而本节课的深度究竟应该挖到哪里呢?事后发现,四年级上学期的学生在教师的引导帮助下,能够借助三角形的内角和等于180度进而得出四边形的内角和等于360度,但是,如果要学生进而得出五边形,六边形的.内角和,最终发现所有多边形内角和的计算规律,在这一节课上是实现不了的。所以,本节课的难点定位是学生能够根据三角形的内角和等于180度,知道可以将四边形变成两个三角形,一个三角形的内角和等于180度,那么四边形的内角和等于360度。

  肖川认为“对教师而言,上课是与人的交往,而不单纯是劳作;是艺术创造而不仅仅是教授;是生命活动和自我实现的方式,而不是无谓的牺牲和时光的耗费;是自我发现和探索真理的过程,而不是简单地展示结论”。

  所以,为了实现教学过程的创新与生成,笔者经过多次的实践,本节课最后的教学过程设计方案如下:从平面图形引入,然后通过长方形来揭示内角概念,通过探究长方形的内角和是多少?自然引入三角形有几个内角,三角形的内角和是多少?你们确定吗?让学生大胆的猜想,学生都能想到三角尺中的两个特殊的三角形的内角和等于180度,然后追问:我们手中的三角尺的内角和是180度,是不是说明三角形的内角和都等于180度?这样通过特殊三角形到一般的三角形,引导学生自主探索三角形的内角和是多少度。学生大多认为通过测量可以来验证,但是活动之后用测量的方法难免有误差,于是老师就追问:有的同学量出来是正好是180度,有的是接近180度?这样你能确定三角形的内角和等于180吗?那么怎么办呢?你有什么其他的好办法呢?接着教师引导“如果三角形的内角和是180度,那么把它的三个内角拼起来,你觉得会拼成什么?”引出了用拼一拼一方法将三角形的三个内角拼成一个平角。而学生对于怎么拼还有疑惑,于是教师就在黑板上演示用撕的方法将三个内角拼在一起,然后再让各小组试试用拼一拼的方法,最后在交流的时候特地找那些量的不准的小组进行展示,所有的小组拼出来的结果都是等于180度,这样就能得出我们想要的结论。练习环节先是知道其中的两个角求第三个角,交流时体现了算法的多样化,然后是让学生用两块完全一样的三角形拼成一个图形,这样的题目比较有思考的空间,也有创意性,因为拼成的图形可以是大三角形,长方形,正方形,平行四边形。如果是看成大三角形,那么这个三角形的内角和还是等于180度,即又巩固和深化了三角形的内角和等于180度,而长方形,正方形的内角和在一开始上课时已经知道是360度,那么现在我们学习了三角形的内角和等于180度之后,现在我们可以将它们的内角和看成什么呢?学生会说看成两个一样的三角形,两个三角形的内角和相加等于360度。而接着追问平行四边形的内角和呢?学生也能自然的说出。最后追问一个任意的四边形的内角和呢?有学生会说,可以看成两个三角形,但这两个三角形的大小形状不同。但是,任意三角形的内角和都等于180度,所以四边形的内角和都可以看成是两个三角形的内角和,进而得出了四边形的同角和,同时发了练习纸引导学生在课外探究五边形、六边形的内角和是多少。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神,顺利的达成了教学目标,解决了教学重难点。

  几节课上下来,笔者越来越肯定,教师完全可以做教材的开拓者,只要合理的对教材进行了整改分析,巧妙的设计练习,准确的了解学生的认知起点,反复的琢磨教学过程并进行创新,对学习材料进行思考与选择,就能打破教材的编排次序,让学生重新整合知识,实现知识的优化与提升,最终促进学生创造与发展。

  

《三角形的内角和》教学反思5

  这节课我让学生经历观察、猜想、实验、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。在学生猜测三角形的内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

  新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。我在实施探究学习时采用了以下的教学策略:

  (1)创设问题情境,引导学生发现问题,思考问题。

  本节课我在教学上先通过大小三角形争论故事引入,让学生产生疑问,继而借助特殊三角形(三角尺)初步感知这些三角形的内角和是180度,让学生猜测是否所有的三角形的内角和都一样呢?学生初步建立一个表象,学生运用已有的知识经验能否解决这样的问题呢?这个问题为后面的猜测和验证做了铺垫,引发思考,激发学习兴趣。引导学生从特殊三角形过渡到一般三角形的.验证规律。

  (2)创造解决问题的环境,给充分的机会和时间让学生解决问题。 学生在问题面前是退缩还是前进呢?这就看老师如何有效地引导。我预先要求每位学生准备了一些各式各样、大小各异的三角形,还有剪刀,量角器,白纸,直尺等,让他们经历观察、猜想、实验、证明等数学活动过程。同时提出两个问题,第一:你选用什么三角形, 采用什么方法来验证?第二:经过操作得到什么结论?使学生在操作上有更强的目的性和指向性。学生分小组对大小不一的三角形进行验证,经历量一量、算一算;撕一撕,拼一拼;折一折,量一量等一系列操作活动,从而得出“三角形的内角和是180°”这一结论。整个探究过程学生是自主的、积极的。学生通过操作,思考,反馈等过程真正经历了有效的探究活动。

  对于这堂课的困惑,我觉得在有效教学当中,应该如何更好地处理“预设”与“生成”之间的关系,如何巧妙地抓住课堂中的生成,适时调整教学环节。教学设计在准备阶段,我已预设了相关的教学环节。但真正在课堂实施时,可能会出现一些不可预知的因素。如在这节课上的练习环节中,有这样一道题目:已知直角三角形的一个角是40度,求第三个角的度数。在全班交流的时候,有一个学生很快就说出90度-40度=50度。其实在预设教案时,这种方法是最后才提到的,此时我就没有能好好去把握这个有价值的生成资源,把学生聚焦在如何利用简算来解决问题。我完全可以让这些学生说说自己的思考过程,这样做既让学生在解题方法上得到扩充,同时又符合学生的认知规律。要把握在课堂上出现的一些“生成”的资源,如何加以好好的利用。

  不足之处:

  1.验证猜想环节中,学生的方法虽然各有不同,但方法较单一,语言表达能力欠佳,思维比较定势,不敢大胆尝试不同的方法去验证自己的猜想。

  2.评价语言和方法都太单一,激励性评价没有层次。发言的学生面比较窄。

  3.教师语言不简练,老重复,总怕学生听不清楚,听不明白,语言罗嗦是我一直以来的大毛病,以后要克制自己学生会说的自己不代替,尽量不重复。

  4.因为学生在以前的学习活动中,对剪拼和拼折的方法接触的太少,考虑到课堂教学时间的关系,所以教师引得太多,给学生的自主发现机会太少。

《三角形的内角和》教学反思6

  有许多内容我们教过多次,但如何教教学效果更好,值得我们不断地去探索。

  学习了《三角形的内角和》一课,回想一下,有许多想法:三角形的内角和为180°这一结论学生在小学就已经知道,只不过那时是通过度量得出来的。因此这一结论的证明思路和方法成为本节课的重点。

  如何证明这一结论,是小组合作学习的契机。在上新课之前,我事先让每个学生剪好了一个三角形,这样,就可以让学生通过小组合作交流的方式来验证。教学中,让学生把三角形的任意两个角剪下来,把三个内角拼合在一起,会得到一个180°的角。在这一过程中,学生很快进入状态,积极性较高。并且有的小组整出了多种拼合方法,还有一个小组通过折叠的方式来验证,我都及时给予肯定。接下来让学生把得到的图形画在练习本上,从中有没有受到启发,探索出证明思路。这一过程中,有些同学能拼出但画不出图形,导致了找不出证明的.方法。下一步在证明的时候,有的同学能说出理由,但写的时候无从下手。说明学生不论是在逻辑思维方面还是几何语言方面的表达上都存在着相当大的困难。在后续的学习中需要慢慢培养学生这方面的能力。

  教学有法,教无定法,学生能学会的方法就是好方法。

《三角形的内角和》教学反思7

  在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:

  1、学生小组合作学习的能力还有待于进一步培养

  在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。

  2、我本身驾驭课堂的能力还有待于提高

  由于在试讲的过程中我设计的'最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。

《三角形的内角和》教学反思8

  《三角形的内角和》是人教版四年级下册第五单元的内容,是学生学习了三角形的特性及分类的基础上学习的。本节课我主要设计了四个环节,提出问题→合作探究→学以致用→分享收获。

  第一个环节中,我先设计了一个情境,三角形三兄弟(锐角三角形、钝角三角形、直角三角形)争论谁的内角和大,一下子激起了学生的探究兴趣,这个时候就有学生说一样大,此时引出课题,同时学生提出问题:什么是内角?三角形的内角和是多少度?

  第二个环节是合作探究三角形的内角和,这个环节里学生小组合作,通过量、撕、折等方法,验证三角形的内角和是180。

  第三个环节是学以致用,我设计了三个闯关游戏,第一关是已知两个角的度数求第三个角的度数,第二关是等边三角形、等腰三角形和直角三角形一个角的度数,第三关是两个相同的三角形组成一个大三角形后,大三角形的内角和是多少度。

  反思师生互动的过程,本节课的优点有:

  1、本节课中学生探究欲很高,课堂研讨气氛浓厚。

  2、小组合作中,学生们发现测量时,三角形的内角和不一定是180,培养了学生事实求是的科学态度,此时学生能运用转化思想解决问题,从而提升了学生解决问题的能力。

  3、量、撕、折的动手实践活动,不仅提高了学生的动手操作能力,而且让在动手的.同时动脑、动口,积极参与知识学习的全过程,鼓励学生多观察、动脑想、大胆猜、勤钻研,增强了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。

  4、课堂练习题的设计层层递进,以及实践活动的设计,让学生体验了学以致用的快乐,获得成功的喜悦。

  5、学生在分享收获中,各抒己见,提升了自己的表达能力和归纳能力。

  本节课需要改进的地方:

  1、在合作探究环节,我提出问题:怎样来验证三角形的内角和?此时学生提出了测量的方法之后,我没有给学生留有足够的思考空间,而是直接介绍了“撕、折”的方法,让孩子们进行探究,课堂中缺少了更多的生成。

  2、课堂中设计了实践活动环节,学生们非常感兴趣,但是由于时间不充足,有些学生理解的不够充分,这个环节学生的参与度不够,考虑可以放到课后思考。

《三角形的内角和》教学反思9

  三角形内角和等于180,对于大多数同学来说并不是新知识。因为在此之前同学们已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一知识点,也不是怎样运用它去解决问题,而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。

  1、以疑激思

  古人云:学起于思,思源于疑。因此,要激发学生的思维,让学生主动探索。学生的积极思维往往是由问题开始的,在解决问题中得到发展。因此,在课一开始,我便通过拟人化的对话情境:大三角形说我的内角和比你大!小三角形很不服气的说我的内角和比你大!接着抛出一个问题:到底哪个三角形的内角和大呢?为什么?你能证明吗?引起了学生的积极思考,并探索解决问题的方法。

  2、以动启思

  在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

  虽然,在教学中也还有一些不顺利的'地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂可采用这样的方式展开教学是学生喜欢的也是有成效的。

《三角形的内角和》教学反思10

  《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  一、创设情境,营造探究氛围。

  怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180°,由此引发学生的猜想:其它三角形的内角和也是180°吗?

  二、小组合作,自主探究。

  “是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的`基础。

  三、练习设计,由易到难。

  探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。

  这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。

《三角形的内角和》教学反思11

  备学提纲:

  1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。

  2、阅读课本P28-29,记下收获和问题。

  3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。

  批阅了孩子们的预习作业,亮点是孩子开始会提问题了,如:

  1、什么是内角?

  2、两个三角尺拼成一个三角形,这个三角形的内角和是多少?是360°吗

  3、两个三角形拼成一个大三角形,画出来的时候中间有1竖,1竖两边的直角为什么不算呢?

  4、所有的三角形的内角和都是180°吗?

  5、用正方形纸折几次,才有8个三角形呢?

  6、既然有内角那有没有外角呢?如果有外角,那外角的度数是和内角的一样吗?

  存在的问题:

  1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的和;画一个三角形,量出每个角的度数再计算。只有一人(季##提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的不良结果,直接影响了孩子们的自学能力。

  2、我设计的.预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。

  今天的课堂,花了一些时间指导孩子如何阅读课本,尤其是阅读课本上的图,看着课本上的图示来操作,所以教学环节不那么紧凑了,印象最深的是:

  孙##和陈##两个有些内向的女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的方法验证三角形的内角和是180°。刘##今天能主动补充别人的回答。

  每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!

《三角形的内角和》教学反思12

  《三角形内角和》是人教版四年级下在学生掌握了三角形的特性和分类之后的一个内容。三角形的内角和为180°是三角形的一个重要性质。它有助于学生理解三角形三个内角之间的关系,也是学生下一步学习三角函数的基础。通过前面的摸底,我发现百分之八十的学生对三角形的内角和是180度是知道的,但都没有仔细研究过。学生有了这样的基础之后,对教师来说,要展开教学还是有困难的。怎么样才能让学生在整堂课中有所收获呢?我把教学目标定位在让学生经过操作、验证等一系列活动,经历猜测、验证的过程,从而习得知识,并得以巩固。我是这样安排的:

  一、认识内角

  通过回忆旧知,引出钝角三角形,让学生指钝角,接着说另外二个角为锐角,

  教师接着引出这三个角叫做这个钝角三角形的三个内角,并画上相应的角的符号。师接着呈现直角三角形和锐角三角形,让学生找内角,让内角这一概念得到巩固。应该说在这个过程中,内角这个概念是落实得比较到位的,学生也能很快领悟到每个三角形的三个内角分别是什么。

  二、认识并猜测内角和

  通过前一阶段的说课,教研员指出在学习三角形的内角和是180度这一内容

  时,我们首先要告诉学生,或者是形成一个共识,那就是三角形的内角和都是一样的,也就是是一个固定的数,有了这样的前提之后才能让学生进行猜测并验证。所以在设计的时候,我把这二个活动结合在一起进行了。通过让学生观察,猜测哪个三角形的三个内角和相加的和最大?通过这一问题,既引出了内角和,也抛出了猜测。在这个问题抛出之后,通过和吴校长讨论,我们做了各种各样的预设。在课上,问题一抛下去,学生都说是一样的,是180度。面对这样的`起点,我就接着问学生一个问题,你是怎么知道的?第一位学生回答得支支吾吾,也不知道该怎么说,就坐下了。第二位学生说:因为三角板上有过的,相加的和是180度。这个回答也是在我预设之内的,学生对三角形的内角和接触最多的就是从三角板上获得的,所以当学生有了这样的回答之后。我就说,同学们,看一看我们的三角板,你发现它们都是……(直角三角形)那钝角三角形和锐角三角形呢?你们仔细研究过吗?今天我们就来研究一下这个问题。通过这一环节,直接把话题引到了今天学习的内容上来了。

  三、动手测量,验证猜测

  在这个过程中,我分了二个层次,第一:学生量教师给的三种类型的三角形。

  第二:生任意画一个三角形进行验证。让学生经历从特殊到普遍的过程。这是动手操作的过程。因为前面没有试教过,所以在这里花的时间比较多,我自己觉得课上得有点拖,也有点沉闷。但在这一过程中,我也发现了很多的问题。很多学生是运用180度这个结论来量的。比如说他先量了二个角,最后一个角就不量了,直接用180度减去前面二个角,就是第三个角。我想如果这样的话就失去了测量的意义了。在交流的过程中,很多同学都说他们测量的结果是180度,导致另外一些不是180度的学生不敢表达自己的意见。我想面对这样的问题,如果我在交流反馈的时候,再多加一个环节,问你量出来的三个角分别是几度,内角和是几度,这样是不是会减少一些这样的问题。

  四、通过剪剪拼拼,再次验证

  这一环节,我选择了直接告诉学生,剪下三个角来拼一拼,看看有什么发现。

  通过了解,其实有一些学生是知道的。(在听课的过程中,旁边的四年级老师告诉我,他们以前组织过这样的活动,让学生剪角、拼角,所以一些学生有这样的基础)因为事先没有了解,所以我低估了学生的能力。如果我选用抛问题的方法,可能会出现一些亮点。当然这也只是一小部分学生而已,其实在实际的操作过程中,在我电脑演示了剪与拼的过程之后,再让学生自己任意剪一剪、拼一拼的时候,还是有很多学生是不会拼的,不知道三个角该怎样放。我想在这个过程中,我在电脑演示的时候,如果再多加引导一下的话,可能在操作的过程中,更多的学生能够参与进来。

  整堂课下来,我自己觉得上得很沉闷,由于操作活动比较多,学生的注意力也不是非常集中,当然这和我自己有很大的关系,因为没试教,心里紧张,也因为自己没有经验,课堂气氛没能调节得很好。幸亏有幸听了另外二位老师的课,感觉受益匪浅。特别是徐老师的设计,给了我很大的启示。在自己的课中,我就觉得虽然验证的过程很严密,从特殊到普遍这样一个过程,但是留给学生思考的空间特别少,学生只是进行一些操作。而徐老师通过对直角三角形的验证,继而请学生选择自己喜欢的方法对钝角三角形和直角三角形进行验证,我认为这样设计比我这样设计要好,学生的学习主动性也一下子体现了出来。在验证的过程中,也是方法的运用。总而言之,在上课的过程中,给了我一次学习的过程,在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节。在听课的过程中,让我有了茅塞顿开的感觉,当然这些离不开执教者对教材的深入理解,所有这些,都让我这个新教师感动……

《三角形的内角和》教学反思13

  本节课我通过生动活泼的多媒体课件和学生们一起探讨三角形的内角和是180°这一规律并运用这一规律解决实际问题。课件中不仅有动画而且插入音频,激发学生的学习兴趣,开阔学生的眼界,调动他们学习的激情。

  首先课件演示三种不同的三角形在争吵,(学生录音,把每个三角形说的话录下放入课件中)让学生判断他们在争吵什么,引入本节课内容。这样可以使学生的眼睛一亮,耳朵受到刺激,吸引珠学生们的注意力,很巧妙就把学生带到课堂上,激发他们的学习兴趣。

  再次让学生观察每把三角尺的内角和内角和,以及用两个一样的三角尺拼成一大三角形,它的内角和内角和是多少,利用身边的学具材料猜想是不是所有的三角形内角和都是180°呢?提出问题,提出质疑,学生带着问题和质疑进行小组合作探究。合作探究时同桌两人一组测量三角形的内角以及计算三角形的内角和,并抽查小组上台把合作探究结果输入电脑表格一便统计和观察。但是由于需要帮助学生输入电脑,不能对每组学生的测量进行指导及询问,很多学生是运用180度这个结论来量的,不过还是有一组学生测量后得出结论是189°,有了误差。下面我就引导学生哪个角是180°,以致学生提出把三角形的三个内角撕下来看看能否拼成一平角,,师生共同撕拼一个任意的三角形,撕拼过程中学生不知如何下手 我对学生进行辅导。但是有时间的有限,不能让所学生都亲自感受一下这一撕拼的过程。但是课件上我运用动画演示,学生可以亲眼看到这一过程。

  课堂练习我是通过一个游戏“挑战不可能”巩固三角形的内角和是180°这一规律,运用课件展示了练习题的多样化,层次化,有易到难,并运用一些可爱的图片吸引学生的注意力。会后有主角“三角形”(音频)出题带到“荣誉殿堂”。游戏是孩子都喜欢,在课堂上设计一些游戏环节可以激起孩子的活力,调动他们高涨的情趣。但是我觉得这节课我设计的这个游戏只激起部分孩子的兴趣,如果把这个游戏设计成小组比赛或者男女比赛,看谁最终进入“荣誉殿堂”更激发学生的激情。

  总之,本节课我和学生完成的教学目标,学生也能感受到课件不仅能播放图片,而且可以播放音频、动画。通过这节课我深刻体会到运用多媒体教学的优势,可以开阔学生眼界,刺激学生的'各种感官,激发他们的学习兴趣,同时也使教学重点难点可以清晰的展示给学生,可以增大课堂的容量。在今后的教学中,我会是自己不断提升自己的教学水平,多学习和运用信息技术手段改善自己的教学方式,以致提高学生课堂上的学习效率!

《三角形的内角和》教学反思14

  三角形内角和知识,其实早在四年级上学期,角的单元教学中就已经涉及到了。只是做了介绍,这学期把它拿出来专门学习。

  首先,我对三角形的分类进行了复习,让学生们对知识产生连续性。讲解内角和内角和的定义。再复习平角的知识,为后面的拼三个内角和的结论做铺垫。

  先引入长方形和正方形,让学生算他们的内角和,接着展示一个长方形,被一把剪刀沿一条对角线剪开,分成了两个三角形,再让学生们讨论三角形的内角和又是多少?学生很快反应说,是180度,因为360÷2=180。既然给出了答案,我就跟着提出问题:是不是所有的三角形的三个内角和一定是180呢?给学生指出了探究学习的目标。

  通过测量自己手中的三角板,学生们答案是肯定的,但有的学生就提出来了不同意意见。她认为手中的.三角板很特殊,不能代表所有的三角形,结论还不能成立。这样就让课堂教学到达了最关键的阶段。所以我任意的列举了一个锐角三角形、直角三角形和钝角三角形,准备让学生们自己动手量量,然后再总结结论。但又考虑学生在实际操作时,对量角的方法有遗忘或出差错,影响教学的时间和效率,我放弃了学生操作的环节,改成我用量角器量,点学生来给我读度数的方法。

  效果比预期的要好,学生们都争先恐后的想上前读度数,所以都特别积极。有时为了1-2度的误差而争论不休,有时也为自己精确度数而喝彩,学生们不仅复习了量角器量角的方法,更是验证了三角形的内角和度数。教学一气呵成,学生们掌握的情况非常好。

  想不到我一个小小的改变,竟会对教学产生不可估计的效果,不仅可以点燃他们求知的欲望,更可以激发他们特有的童趣,让整个数学课堂散发着一种催人奋进的热情。数学课活了起来,知识动了起来,学生们的脑筋更是转了起来,课堂效率也升了起来。

  这节课,不仅让我感受了教学中创造的“意外”精彩,更让我重新定位了四年级学生的看法。虽然带了快一年的四年级数学,但心里总是觉得他们太顽皮、太马虎、不听话,讲过和做过很多遍的习题,还是一直再错;强调过很多次的要求,还是毫不注意;早已墨守成文的规定,也是明知故问,现在想想,这是他们的年少无知,也正是他们的纯真可爱。毕竟他们只是一群10岁大的孩子,现在的他们具有最天真无邪的思想和无忧无虑的世界,这也是我们每一个人都曾拥有过的美好回忆。

  同时他们身上隐藏着许多“宝藏”,只要我们善于寻找和发现,这些“宝藏”将会带来无限财富。

  教学让我有了新发现,相同的知识,不同的教法,效果也不相同。有时“意外”会带来惊喜;有时“安排”会失去精彩。确实,这不禁让我想起了一句广告:惊喜无处不在。

《三角形的内角和》教学反思15

  在教学《三角形的内角和》这一课时,为了达到本节的教学目标,我在教学中根据学生的认知特点,放开手让学生去自己验证三角形的内角和是多少。

  上课前学生就已经知道三角形的内角和是180°,为了让学明白为什么是180°,激发了学生的学习兴趣。在讲“三角形的内角和”时,开始就由大小不同的三个角(锐角、直角、钝角)争论谁的角大入手,导出锐角三角形、直角三角形、钝角三角形争论谁的内角和大。对于这场争论的结果是什么,会引发学生的思考,究竟哪个三角形的内角和大?这也正是我本节课要与学生共同研究的问题。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我及时揭示课题,提出学习目标,引导学生讨论学习方法。当学生通过量一量、拼一拼、折一折之后得出自己的结论时,他们体验了成功,也学会了学习。在这节课中师生互动交流,共同找到了几种验证三角形内角和是180°方法,很好地体现了师生的双边活动。试想,如果上课之初,我自己一味的的`去告诉他们三角形的内角和为什么是180°,并且告诉他们探究方法,我想即便告诉的方法再多,再详细,他们学到的也只是有限的方法,而且是老师的方法,不是自己发现的方法。但换一种教学方式,孩子们不但找到了所有我知道的方法,也找到了我意想不到的方法,我们大家在研究中都是受益者。

  为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。

【《三角形的内角和》教学反思】相关文章:

《三角形的内角和》教学反思03-03

《三角形的内角和》教学反思07-06

三角形的内角和教学反思优秀03-03

《三角形的内角和》教学反思15篇03-11

《三角形的内角和》教学反思经典[2篇]10-07

《三角形的内角和》教学反思(15篇)03-11

《三角形的内角和》教学反思范文通用09-05

《三角形内角和定理》数学教学反思10-25

《三角形的内角和》教学反思(集锦15篇)03-22