“圆柱的表面积”教学反思
身为一名人民教师,我们的工作之一就是教学,对学到的教学新方法,我们可以记录在教学反思中,怎样写教学反思才更能起到其作用呢?以下是小编帮大家整理的“圆柱的表面积”教学反思,仅供参考,希望能够帮助到大家。
“圆柱的表面积”教学反思1
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重点:圆柱表面积的计算。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。
学法指导:采取引导 放手 引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、茶叶桶。
教学过程:
一、检查复习,引入新课
(复习圆柱体的特征)
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
问:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、引导探究,学习新知
(一)教学圆柱表面积的意义。
设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
板书:底面积×2+侧面积=表面积
要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)
条件:(厘米) r=3 d=4 c=6.28
底面积(平方厘米) 28.26 12.56 3.14
(三)教学圆柱体侧面积的计算
1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?
(2)小组合作探究。(剪圆柱形纸筒)
(3)汇报交流研究结果,多媒体课件展示。
(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体的侧面积。
多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的'侧面积。并把结果记录下来。
条件(厘米) h=5 h=8 h=10
侧面积(平方厘米) 94.2 100.48 62.8
(四)教学求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
3、汇报计算方法及结果,媒体出示结果进行验证。
表面积(平方厘米) 150.72 125.6 69.08
(五)小结:圆柱表面积的意义及计算方法。
三、练习巩固,灵活运用
(一)多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图,引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?
指出:圆柱表面积在实际计算中的意义。
(二)根据要求练习。
1、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?(只列式不计算)
2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?(只列式不计算)
3、用铁皮制一个圆柱形的油桶,底面半径3分米,高12分米。制这个油桶至少要用铁皮多少平方分米?(得数保留整十平方分米)
根据学生的计算结果,教学用“进一法”取近似值。
小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。
(三)操作练习。
根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。
练习要求:(多媒体出示)
讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?
测量:借助工具测量出需要的数据(取整厘米数),并做好记录。
计算:根据量得的数据,列出相应的算式并算出结果。
反思:
一、合理灵活地组织和利用教材
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
“圆柱的表面积”教学反思2
圆柱体的表面积是学生学了长方形、正方形、平行四边形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到曲线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习-圆柱体的表面积是学生学了长方形、正方形、平行四形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习的方法注入了新的内容,并使得学生的空间观念得到了进一步的发展。
图形的学习对于学生来说是一个抽象的知识,只有结合生活,练习生活,让学生亲眼去看一看,亲手去做
一做,亲自去想一想,才能使之成为具体的、可接受的知识。本节课的教学设计分为三个层次。教学层次非常清晰。
第一层次:巩固上节所学《圆柱体的认识》的有关知识。学生通过观察实物,掌握圆柱体的底面、侧面和高,能正确地说出圆柱体的特征。
第二层次:推导圆柱体的.侧面积和表面积计算公式。首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。通过实物观察和实验,使学生了解到这个长方形的长就是圆柱的底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形的面积公式很自然地推导出求圆柱体的侧面积公式。在会求侧面积这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求表面积的计算方法。使学生认识到立体转平面、形变量不变的辨证关系,培养学生们的观察、分析能力。
第三层次:针对本节所学知识设计了一些基本应用题。安排有:求圆柱的侧面积,求圆柱的表面积。是对圆柱侧面积和表面积公式的巩固。
郑老师极其注重数学知识生活化。一方面,注重从生活现象中提取数学知识,引入数学学习;另一方面在学生掌握了一定知识后,及时应用所学知识解决生活中的问题,也可以说数学的回归。比如练习中帽子、通风管表面积的计算等,我想如果给足时间,数学知识的回归在这些课上有更多的体现和应用。在六年级的课堂上,郑老师注重学生的探究活动是很明显的。以学生为中心,以学生的主动探究为主,
让学生敢想、敢说,从而主动的去获取知识。同时,注重操作活动在图形学习中的地位。操作是学生认识图形、探究图形特征的重要途径,正是操作活动,学生的探索学习才能得到顺利展开,也正是操作活动,学生对有关数学知识的体验更加真切和深刻。最后,郑老师注重学生的思维表述。如果说操作活动能更强调知识的深刻性,
那么语言表述也就是说,就是对知识的梳理,知识的罗列,知识的系统话整理和知识的重组。
整堂课也有值得探讨的地方。语言的衔接稍有跳跃。课堂的连接语是课堂驾驭能力的表现,也反映了教师
设计课堂,生成课堂之间的一种应变。同时,这也与教师对于教学设计过程的熟悉程度有关。
“圆柱的表面积”教学反思3
本节课是在初步认识圆柱的基础上,理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
根据教学内容的特点和我班学生的实际,本节课的教学我采用了直观演示和实际操作,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合,有效地培养了学生的'空间观念和解决实际问题的能力。
1、把握重点,突破难点,合理利用教材
本课教学重点是掌握圆柱侧面积和表面积的计算方法。对于圆柱体侧面面积计算公式的推导,我遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,让学生经历知识形成的过程,同时培养了学生的空间观念。
3、讲解与练习相结合
本节课,我改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
4、还要进一步加强学生解决问题能力的培养。
学生学习了圆柱侧面积和表面积的计算方法后,在做稍复杂一点的补充作业时,出错的同学较多,这说明学生灵活运用所学知识解决实际问题的能力还不够,还要进行有针对性的训练。
“圆柱的表面积”教学反思4
教学内容:
小学数学第十二册教材P33~P34
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件
教学重点:
圆柱侧面积的计算方法推导。
教学过程:
一、猜测面积大小,激发情趣导入
1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法
师:怎么计算圆柱的表面积呢?
圆柱的表面积=侧面积+两个底面的面积 (板书)
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
师:老师现在告诉你的.数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)
底面积:3.14×5×5=78.5(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+78.5×2=748.576(平方厘米)
情况二:半径:18.84÷3.14÷2=3(cm)
底面积:3.14×3×3=28.26(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+28.26×2=648.096(平方厘米)
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)
所以圆柱体表面积=长方形面积=底面周长×(高+半径)
用字母表示:S=C×(h+r)
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)
那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。
本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。
三、 分组闯关练习
1、多媒体出示题目。
第一关(填空)
沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。
第二关
一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。
第三关(用你喜欢的方法完成下面各题)
一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?
2、汇报结果,给予评价。
我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。
四、 质疑(同学们还有什么疑问吗?)
五、反馈小结:
教学反思
1、 自主探究,体验学习乐趣
以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。
2、合作交流,加深对知识的理解深度。
给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。
“圆柱的表面积”教学反思5
一、合理灵活地组织和利用教材。
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
教学这节课,我改变了传统的先讲后练的.教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
三、较好地培养学生的合作意识和实践能力。
1、培养了学生的合作意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。
2、培养了学生的实践能力。
新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。
四、较好地利用现代化的教学手段。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系。
“圆柱的表面积”教学反思6
1、把握重点,突破难点,合理利用教材。
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合。
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,
3、让学生自主学习,探究圆柱的侧面积和表面积的计算方法。
让学生自主学习,对培养学生的学习兴趣和学习能力有较大的帮助,使学生在学习过程中获得数学知识,并感受学习的快乐与成功感。
4、讲解与练习相结合。
本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
5、使学生能正确计算圆柱的侧面积和表面积。
为了让学生能正确地计算圆柱体的表面积,我要求学生先用分部算式计算,并写清s侧=和s表=,以便学生分清自己每一个算式计算的是哪部分的面积。
6、发展学生空间观念,并能利用知识合理灵活地分析、解决实际问题。
在这方面的练习题中,学生往往对题意理解不够,不知道是计算哪些部分的.面积,通风管的材料,有不少学生加上两个底的面积。为了让学生发展空间想象能力,我提示学生在解决问题前,一定要弄清题意,并尽量回忆一上实物的结构,自己没有见过的,应通过日常应用知识来想一想、画一画,看看它应是个什么样了的,再作解答。学生中出现的共性问题,教师再集中讲一讲。这样一来,就大大地提高了学生灵活运用知识解决问题的能力。
总之,这节教学内容是本册教材中的一个重难点,如何能达到更好的教学效果,有待我们教师去探索、去研究适合学生心理接受的更好之法。
“圆柱的表面积”教学反思7
为了能充体现新课程理念,促进学生的发展,教学过程中我精心安排了观察、操作、讨论交流、应用等教学活动,同时积极营造愉快、民主、轻松、和谐的学习氛围。反思整堂课程教学主要围绕以下几点展开:
一、打破传统教学,灵活合理地重组教材
“圆柱的表面积”这部分数学内容包括:圆柱的侧面积、表面积的计算、表面积在实际计算中的应用。教材安排了一道生活例题,分步教学。备课时,我打破了传统的教学程序,将这些内容重新组合,合理把握教材,力争有效的完成教学任务。首先将侧面积计算方法的推导作为教学难点来突破:后将表面积的计算作为了重点来教学;将表面积的实际应用作为重点来练习。三者有机结合、相互联系、多而不乱。教学设计和安排既源于教材,又不同与教材。例题并没有专门的教学,但其指导思想和目的要求分别在教学过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了课堂教学效率。
二、充分发挥教师主导与学生主体作用的统一。
本节课在教学上采用了引导—合作—引导的方法,通过教师的“导”,鼓励学生积极、主动地探求新知。
1、直观演示与实际操作结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱体表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在我的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最终发现圆柱的侧面展开图有多种形式,而不是单纯的照本宣科,沿高线展开;另外实践中使所有图形进而转化为长方形。实现教材的回归,最后探究出侧面积的计算方法。
2、教师讲解与学生练习相结合
教学过程中,我改变了传统的先讲后练的教学模式,做到讲练结合惯穿始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。具体做法是:在学生理解圆柱的侧面积的公式后,安排学生强化训练:紧接着又复习圆面积公式,训练计算圆柱的底面积,利用计算所得的数据,合理自然地计算出圆柱的'表面积。在练习表面积的实际应用时,又很自然地进行了实际生活问题的引导教学。使学生学得轻松,练得有趣。
三、较好地培养了学生的创新意识
1、培养了学生的合作创新意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手学生合作探究,鼓励学生猜想和实验,最终学生通过动手、观察和思考,探讨出了侧面积计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。
2、培养了学生的实践能力。
本节课我大胆给予学生自主探索的时间与空间,让学生动手测量、动手实践,使学生处于学习主体的地位,充分发挥每一个学生的潜能,让学生在合作学习中不仅达到学以致用的目的,而且培养了实践能力。
四、较好地利用现代化的教学手段。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态课件演示,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的罐头盒、笔桶、圆柱立柱等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系
五、课后拓展、知识设计联系实际。
安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。设计题目的计量单位有所不同。课后习题层次加深,始终以培养学生审题习惯及应用能力的提高为主线。
当然,在这节课的教学中,还存在着一些不足:
一、我整节课的板书安排不够合理,书写有些潦草!
二、实践操作时间安排有些急。在动手探索圆柱侧面积的计算方法时,大部分学生操作慢,展示推导的过程有些短促,导致个别学困生只能听听而已。
三、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
“圆柱的表面积”教学反思8
今天,看到了一份家庭作业,非常激动。昨天上课内容是《圆柱表面积》,课堂上让学生观察圆柱的表面,了解圆柱表面是由两个完全一样的圆(平面图形)和一个侧面(曲面)构成的,进而明白圆柱的表面积是什么。如何计算圆柱的表面积就很明了了,只要将侧面这个曲面转换成学过的平面图形,上下两个底都是圆,而圆面积计算已经学过了,一切都会很顺利的解决。所以,当我最后把圆柱的展开图画到黑板上的时候,学生很容易发现展开的长方形(侧面)的长就是底面圆的周长,宽就是圆柱的高。因为长方形的`面积=长*宽,所以圆柱的侧面积=底面周长*高,字母表示就是S侧=2r*h。进而很容易得出:圆柱的表面积=圆面积*2+侧面积。用字母表示就是S=2*r2+2r*h,如果用乘法分配律提取公因数的话就可以得到S=2r*(r+h)。整节课就像我所预料的那样有条不紊的完成了教学任务。
但是,总觉得少了点什么。对,缺乏继续深入的思考。这个内容不应该就这样戛然而止,所以,我就布置了这样一份家庭作业:有兴趣的话,尝试用其他方法得出圆柱表面积计算公式?作业虽然布置下去了,但是也不抱多大希望。毕竟,有点难,学生也要准备小升初,愿意花时间去探究吗?
今天,这项作业收上来,不多,有一小半的同学交来了。大部分是因为想不出其他办法,而交来的这项作业中,有很多同学是把侧面展开成了平行四边形,仿照课堂上的方法推导的。
突然,一份令我激动的作业出现了,是那个平时最爱动脑的男孩子。他是用图来表达他的想法的,思路非常清晰。能将曲面转化成平面的长方形,那么也能用原来学过的知识将圆也转化成近似的长方形,这样经过拼接,整个圆柱的表面展开图就可以拼成一个大的长方形,长方形的长是底面圆的周长,宽是圆柱的高+半径。
“圆柱的表面积”教学反思9
“圆柱的表面积”历来是学生学习的难点。观察发现,难点一:圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程。这是理解的难点;难点二:在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;难点三:计算难度大,无论是圆的周长和面积计算中都涉及圆周率(∏);难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。
一 抓住特征,建立表象。在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。
二 突破难点,紧抓联系。探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,例2结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。
三 抓住本质,理清思路。圆柱的表面积包括一个侧面和两个底面。计算圆柱的侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的`进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。
本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力。
“圆柱的表面积”教学反思10
本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合。
1、把握重点,突破难点,合理利用教材
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的.计算方法,鼓励学生积极主动地获取新知。
3、讲解与练习相结合
本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
“圆柱的表面积”教学反思11
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的周长和面积计算公式,因此解答圆柱体的'表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。特别是有关于∏计算,学生一定要认真计算才能得出正确结果,三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
“圆柱的表面积”教学反思12
教学内容:
九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题
教学目标:
1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。
教具准备:
圆柱形的物体,圆柱侧面的展开图
教学重点:
理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
教学难点:
根据实际情况来计算圆柱的表面积。
教学过程:
一、复习
下面()图形旋转会形成圆柱。
二、认识侧面积的意义和计算方法。
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的长方形商标纸的.长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
圆柱的侧面积=底面周长×高
长方形的面积=长×宽.
4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
5.独立完成“练一练”第1题
三、认识表面积的意义和计算方法。
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
⑴各自练习,并指名板演。
⑵对照板演,讨论:
这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?
想一想:如果知道的是圆的周长呢?
四.总结反思
1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?
畅谈体会。
五、巩固应用
1.完成练习六第1题。
注意指导学生思考问题要求的是圆柱的哪个面。
2.完成练习六第2题。
先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?
教学反思:
本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
“圆柱的表面积”教学反思13
1.教学要引起学生的问题意识。
“问题是数学的心脏。”问题意识是一种探索意识,是创造的起点。学生有了问题,才会思考和探索,有探索才会有发展。所以我让学生去发现计算圆柱的表面积在课堂中和生活中的区别,使他们意识到课堂中的数学是经过提炼总结出来的。用数学知识解决问题,如算出茶叶筒至少需要多少平方厘米的铁皮,由此引起学生的认知冲突,调整原有的认知结构,促进探究向深层次推进。
2.教学要激发学生的过程意识。
数学学习的本质是“再创造”。数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。这节课围绕“制作一个圆柱”展开活动,探究的脉络清楚。学生经历了“实践——失败——总结——再实践——成功”的探究过程。如:学生在失败后说:“我们忽视了侧面与底面的关系,计算时我们都知道圆柱的底面周长就是侧面展开后长方形的长、正方形的边长或者平行四边形的底。但制作时就忘记了这些知识。”“学生在经历了失败才引起了思考,在对与错、应该与不应该的斗争中撞击智慧的火花,课堂的`生命力由此显现。在总结之后的再一次实践中,学生的创新意识和创造能力体现出来了,这种情不自禁的创造来源于感悟和体验。只有经历了这样的感悟、体验的过程,才能得到能力的锤炼,智慧的升华。
“圆柱的表面积”教学反思14
圆柱的表面积是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个化曲为直的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率;经验少,类似烟囱、通风管、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。
一、在操作中建立表现。
学生已经学习了长方体和正方体的表面积,对表面积的概念并不陌生。在教学圆柱的表面积时,我先让学生自己制作圆柱体、在动手做一做的过程中理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的,从而真正建立圆柱侧面的表象。
二、化曲为直沟通联系。
课前布置预习作业,找一贴有商标纸的圆柱实物,沿高剪开你有什么发现。课上学生交流,沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。我在圆柱的教具上包一张长方形纸,然后张开,在黑板上画上教具的直观图,长方形纸的图(1:1)。让学生观察后说出:长方形与圆柱底面的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长宽,所以圆柱的侧面积=底面周长高。通过展、围的几次操作,让学生切实建立这两者之间的联系。
三、抓住本质,理清思路。
本堂课中学生虽然很明确的知道求圆柱体的'表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在解决问题时,我要求学生写出每一步求的是什么,用了哪一个公式,帮助学生理清思路。遇到计算比较繁琐的提供计算结果,我觉得不必在计算上花费大量的时间。
当然,学生接触到一些实际问题的时候,由于生活经验和社会经验都比较浅薄,对一些物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法一定的不理解,需要通过反复练习才能达到一定的程度。另外我认为在教材的编排上也有一定的问题,五年级时学了圆的知识,过了差不多一年再来运用,根据学生遗忘曲线规律,大部分学生对圆的周长和面积公式比较生疏,虽然通过新授前的基础训练可以唤起学生的记忆,但毕竟要能熟练地用于侧面积和表面积的计算,无形中增加了学生解题的难度。原来教材的编排相对来说更有系统性,学习间隔的时间不长,可以在知识的运用过程中相互巩固内化。
“圆柱的表面积”教学反思15
一、创设情境,悬念导入。
上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?
板书课题:圆柱的表面积
二、合作探究,发现方法。
1、圆柱的表面积包括哪些面的面积?
2、研究圆柱的侧面积。
(1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?
(2)学生想办法亲自验证。
(学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的`是平行四边形,还有的可能是不规则图形。)
师问:①剪、拆的过程中你有什么发现?
②长方形的长当于什么,宽相当于什么?
③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?
(3)推导圆柱体侧面积的计算公式:
通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽
所以:圆柱的侧面积=底面周长×高
3、明确圆柱的表面积的计算方法。
师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?
板书:圆柱的表面积=圆柱的侧面积+两个底面的面积
三、实际应用
现在你能求出做这样一顶厨师帽需要多少面料吗?
出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
1、引导:①求需要用多少面料,实际是求什么?
②这个帽子的表面积 的是什么?
2、学生同桌讨论,列式计算,师巡视指导。
3、汇报计算情况。
板书:帽子的侧面积:3.14×20×28=1758.4(cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4≈20xx(cm2)
答:需用20xxcm2的面料。
四、巩固练习:课本第14页“做一做”。
五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。
六、作业:课内:练习二第5、7题;课外:练习二第6、8题。
附:板书设计
圆柱的表面积
长方形的面积= 长 × 宽
圆柱的侧面积=底面周长 × 高
圆柱的表面积=圆柱的侧面积+两个底面的面积
例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
帽子的侧面积:3.14×20×28=1758.4cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4
≈20xx(cm2)答:需用20xxcm2的面料。
【“圆柱的表面积”教学反思】相关文章:
《圆柱的表面积》教学反思03-10
《圆柱的表面积》教学反思05-20
(精选)《圆柱的表面积》教学反思06-29
《圆柱的表面积》数学教学反思04-22
圆柱的表面积教学反思15篇03-07
《圆柱的表面积》教学反思(15篇)03-14
《圆柱体的表面积》教学反思04-22
《圆柱的表面积》教学反思(精选15篇)04-14
圆柱的表面积教学反思(15篇)04-14