当前位置:9136范文网>教育范文>教学反思>乘法分配律教学反思

乘法分配律教学反思

时间:2024-10-01 12:47:08 教学反思 我要投稿

乘法分配律教学反思(集锦15篇)

  身为一名优秀的人民教师,我们需要很强的课堂教学能力,借助教学反思可以快速提升我们的教学能力,那么应当如何写教学反思呢?下面是小编整理的乘法分配律教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

乘法分配律教学反思(集锦15篇)

乘法分配律教学反思1

  乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。

  从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,是计算的一个难点。因为它不仅仅是的乘法运算,还涉及到加法运算。这节课刘老师教学目标定位准确,没有把目标定位局限于探索理解乘法分配律,而是又引导学生应用乘法分配律进行了简便计算,通过学生与学生之间的互相启发与补充,老师的及时点拨,实现对“乘法分配律”这一运算定律的主动建构。整节课的学习氛围轻松愉悦、学生思维活跃、教学效果非常好。基本完成教学任务。

  刘老师对本课的教学设计很科学,思路清晰,发现问题——观察比较——举例验证——归纳规律——运用规律,让学生经历了从具体到抽象,再由抽象到具体的知识推理方法,这节课不仅教会了乘法分配律,更教会了学生一种数学思想和数学方法,这也正是新课标强调的对学生其中两基培养的体现。

  一、让学生从生活实例去理解乘法分配律

  一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

  通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。

  如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会

  借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

  二、突破乘法分配律的教学难点

  让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

  相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变

  形的能力是教学的难点。为了突破这个教学难点,从生活中的.实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?

  学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

  在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

  建议:在教学中不仅要注意乘法分配律的外形结构,更要注重其内涵。如两个算式为什么会相等?缺乏从乘法意义的角度进行理解。在理解这一概念时,尤其要抓住关键词“分别”加以分析,以此深化对数学模型的理解。否则,象38×99+38这样的形式,就会成为学生练习中的拦路虎。

乘法分配律教学反思2

  乘法分配律是第三章的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用与生活密切相关的情境图植树问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:

  在教学中,通过这次植树情境让学生感到数学就是从身边的生活中来的,激发学生学习的热情。“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

  重点是理解算式的意义,我们在引导中进行总结(4+2)个25的和也可以写为25分别乘以4和2,再把他们的积相加的形式,接着让同学们再次深化理解自己尝试写出几个类似的算式,由于是网上教学,没办法直接展示学生的算式,于是我在大屏幕上写出几个算式,让同学们来说一说他们的.观察到的算式,从而总结出乘法分配律的规律。进而通过计算,发现运用乘法分配律可以使得计算更加简便。

  这节课的不足:

  当我们运用乘法分配律进行练习的时候,我发现学生在做题时会错误的把中间的+抄写成×,导致错误。这说明学生没有完全对乘法结合律和乘法分配律进行区分,还需要再次进行强调。

  这节课上对学生的主题地位有所忽视。虽然是网课教学,没办法与学生共同在一间教室,没办法与学生面对面教学,但是顾虑到时间的限制与学生的互动,留给学生的思考的时间不够充分,接下来在教学设计时可以减少授课容量,留给学生充分的思考时间。

乘法分配律教学反思3

  《乘法分配律》是四年级第七单元的内容,在此之前,学生上个学期已经学过了加法交换律和结合律、乘法交换律和结合律,同时这个学期第四单元混合运算中也运用了学过的运算律进行简便的计算,上课之前,我以为学生对这一部分的知识并不陌生,所以就简单地设计了复习,回顾学过的运算律,再让学生发现运算律在简便计算中的运用,接着就出示了上课的例题,让学生从例题中寻找乘法分配律的影子,再通过举例,比较发现乘法分配律并用字母表示出来,基本完成本节课的新授。通过巩固练习让学生认识乘法分配律在计算和实际生活问题中的运用。上课之前,我以为学生会跟着我的思路走,会很顺利的上完整节课。但上完课,我发现我自己的课堂出现了很多的问题,总结了一下,我感觉自己在很多方面做得很不到位。

  开始的时候,学生回顾运算律的时候出现了小的问题,让我有一点束手无策,导致后面的复习题忘记出示,课堂环节被遗漏。

  教学新课的时候,学生的列式不是我想要的算式的形式,我就直接写出我想要的算式的形式了,其实这个时候可以用乘法交换律变成我想要的形式,同时,我也在想,知识应该是灵活的,我也应该写出学生说出的那种形式,因为这是学生自己列出来的式子,他自己肯定能理解的,但课上我的做法就有点急于求成,有点生搬硬套了。

  小组讨论的时候也出现了很多的问题,本来我认为这节课学生应该很快地发现等式两边的特点的,也能很快地说出它们的共同点的,但上课的时候,小组讨论中我发现,学生根本不知道该如何发现这些算式的共同点,即使有些同学发现了一些特点也不知道该如何表达出来,课后反思了,我发现自己的问题设计的不好,学生不能明白地知道该从哪里入手,是比较数字上面的'关系,还是观察式子上的关系,还是看符号上的关系,所以导致学生不知道该怎么说,还有一点重要的原因是我在讨论之前比较例题中的等式的时候没有清楚地讲到让学生观察等式的运算顺序,导致学生不会说。另一方面,对于将等式抽象成一个字母表示的式子本身不是什么难事,但还要讲出抽象的过程,对于四年级的学生有一点难度,学生能感觉出来就是这样写,但说的有理有据真的很困难。所以在我们的教学中,我们要考虑到学生的认知水平,让学生说出他应该有的想法就很好了,以后的教学中我们应尽量让学生进行小组讨论说出自己的想法,同时也要注意小组讨论的程度问题,提出适合学生的、有效的问题是很有必要的。

  练习中,要更多地关注学生的能力发展,要让学生说出自己的想法,把每一题的设计意图理解清楚,根据题意正确地进行计算,并掌握做题的方法。

  一节课下来发现自己出现了很多很多的问题,希望在以后的教学中能慢慢地减少这样问题的出现。

乘法分配律教学反思4

  “乘法分配律”的学习是在学习了乘法交换律和乘法结合律之后进行的,对于乘法分配律的理解和应用上都比前两个运算定律更有难度,学生在新课学习和知识的应用的过程中思路还比较清晰,但是在作业的过程中出现的好多问题,让人感觉孩子并没有对定律有真正意义上的理解。如:(40+4)×25,有时,只用40×25,后面只加上4就行了,还有的把这道题目改成了连乘题,根据孩子出现的问题和练习中出现的困惑,我认真的设计的这节练习课。

  第一,理清思路,,建构完整的知识体系。在本节课中,我和学生们一起回顾了乘法的几种运算定律,比较每种运算定律的字母公式,来区分乘法交换律、乘法结合律和乘法分配律之间的'外形结构特点,引导学生发现,乘法结合律是几个数连乘,而乘法分配律是两数的和乘一个数或者是两个积的和.从运算符号上我们很快就可以找到它们的不同。乘法交换律和乘法结合律都只有乘号,而乘法分配律有不同级的两种运算符号。

  第二,优化练习题,实行精练。针对学生在乘法分配律学习后在理解上的困难,及乘法分配律在练习形式上的多变,我找出课本、课堂作业本以及一些课外辅导资料上的乘法分配律的计算题,把他们进行概括总结,把不同类型的乘法分配律的方法进行练习,讲解。让学生对不同的乘法分配律的解决方法都进行尝试,帮助理解,加深记忆。

  第三,一题多法。例如25×44,学生在利用乘法分配律拆分其中一个数据的时候,有多种方法,有的学生把25拆成20+5,有的是拆了40+4,还有的把25×44转化成25×4×11,这些方法都可以,让学生分辨出每一种方法所运用的运算定律,从而加深学生对知识的认识和理解,在此基础上,选出最佳方案。

  乘法分配律的练习实在是多种多样,变幻无穷,要想更好的掌握,关键还是要理解,需多练.

乘法分配律教学反思5

  乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。

  教学内容:教材第54~55页例题,完成“做一做”。

  教学目标

  1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。

  2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功

  感,增强学习的兴趣和自信。

  教学重、难点:

  发现并理解乘法分配律。

  教具准备:

  多媒体课件一套。

  教学过程

  一、创设问题情境

  谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)

  二、展开探索过程

  1、初步感知。

  提问:仔细观察,从图中你获得了哪些信息?

  学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。

  提问:猜一猜,这两种方法的计算结果会怎么样?

  计算验证:算一算,来证明你的猜想是正确的。

  板书等式:(30+25)x4=30x4+25x4

  2、类比展开。

  (1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6

  (2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?

  要求6套课桌椅多少元,你准备怎么解决?

  板书:(100+60)x6=100x6+60x6

  3、体验感悟。

  (1)类似这样的等式还有吗?你能写出第4组吗?

  学生举例后,挑3组板书。

  (2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)

  同桌互相检查刚才写的算式是否相等。

  (3)交流:介绍你写成功的经验

  引导:你是怎么根据左边的算式写出右边的算式的?

  4、提示规律。

  (1)提问:像这样的等式能写完吗?

  (2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。

  板书:(a+b)xc=axc+bxc

  (3)板书:乘法分配律

  让学生用自己的语言说说这个字母式子表示什么,师小结。

  三、巩固内化

  1、在□里填上合适的数,在○里填上运算符号。

  (42+35)×2=42×□+35×□

  27×12+43×12=(27+□)×□

  15×26+15×14=□○(□○□)

  学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。

  出示:72x(30+6)= 齐说答案。

  出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结

  2、横着看,在得数相同的两个算式后面画“√”。

  (48+52)×13 48×13+52×13 □

  40×5+2×5 5×(40+2) □

  75×(19+1) 75×19+75 □

  40×50+50×90 40×(50+90) □

  27×(16+30) 27×16+30 □

  独立完成,小组讨论为什么有的'是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?

  出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。

  四、总结回顾

  通过今天这节课的学习,你有什么收获?

  五、布置作业

  1、必做题:想想做做第5题。

  2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。

乘法分配律教学反思6

  《探索与发现(三)乘法分配律》教学反思

  东新四小学 王唯

  教学内容:

  小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页

  教学目标:

  1、经历探索的过程,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  教学重点:理解乘法分配律的特点。

  教学难点:乘法分配律的正确应用。

  教学过程:

  一、复习回顾

  (出示课件1)计算

  35×2×5=35×(2×)

  (60×25)×4=65×(×4)

  (125×5)×8=(125×)×5

  (3×4)×5 × 6=(×)×(×)

  师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。

  二、探究发现

  (出现课件2)

  师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?

  生:我发现有两个叔叔在贴瓷砖

  生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。

  师:你最想知道什么问题?

  生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?

  生:我估计大约有100块瓷砖

  生:我估计大约有90块瓷砖。

  师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)

  师:谁来向大家介绍一下自己的做法?

  生:6×9+4×9(板书)

  =54+36

  =90

  分别算出正面和侧面贴的块数,再相加,就是贴的总块数。

  生:(6+4)×9(板书)

  = 10×9

  =90(块)

  因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。

  师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?

  生:我发现计算方法不同,但结果却是一样的。

  6×9+4×9 = (6+4)×9(板书)

  师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?

  (学生举例,教师板书)

  师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)

  小组1:符合要求,因为每组中两个算式都是相等的。

  小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。

  (板书用=连接算式)

  师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。

  小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。

  小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的.和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的关于乘法的第三个定律。

  师:大家齐读一遍。

  师:和同桌说一说自己对乘法分配律的理解。

  师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。

  (a+b)×c=a×c+b×c

  师:这叫做乘法分配律

  三、巩固练习:

  1、计算

  (80+4)×25 34×72+34×28

  师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。

  2、判断正误

  ( 25 + 7 )×4 = 25 ×4 ×7×4 ( )

  35×9 + 35

  = 35×( 9 + 1 )

  = 350 - - - - ( )

  3、填一填

  (12+40)×3=× 3 +×3

  15×(40 + 8) = 15×+ 15×

  78×20+22×20=(+ )×20

  四、总结

  师:说说这节课你有什么收获?

  师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

  [板书设计]

  探索与发现(三)

  -----乘法分配律

  (a+b)×c=a×c+b×c

  6×9+4×9 =(6+4)×9

  (40+4)×25 = 40×25+4×25

  (64+36)×42 = 42×64+42×36

乘法分配律教学反思7

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。因此在本节课教学设计上,我结合新课标的一些基本理念和本地区的具体情况,注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。

  《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”而我们过去的教学往往比较重视解决书上的数学问题,学生一旦遇到实际问题就束手无策。因此,在上课的一开始,我创造性地使用教材,创设了一个肯德基餐厅用餐的情境,使学生置身于非常熟悉的生活情境中,极大地激发了学生的学习欲望。学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地证明两式相等。接着要求学生通过观察这个等式看看能否发现什么规律。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。

  与此同时,我还十分注重合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中都得到发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的.快乐。既培养了学生的问题意识,又拓宽了学生思维,学生也学得积极主动。

  应用规律,解决实际问题是数学学习的目的所在。在练习题型的设计上,有抢答(填空)题、判断题、连线题、简算题和拓展题,它们并不孤立,而是有机地联系在一起,由基本题到变式题,由一般题到综合题,有一定的梯度和广度。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行简便运算和拓展练习。不仅要求学生会顺向应用乘法分配律,而且还要求学生会反向应用。通过正反应用的练习,加深学生对乘法分配律的理解。从课堂反馈来看,学生热情较高,能够学以致用。学生通过自己的努力以及和同学的交流合作,解题速度和准确性都很理想。只有这样才能真正提高学生的计算能力。

  本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。但学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣。另外,在回答问题时,个别学生的语言不够流利、准确。对乘法分配律的叙述稍显罗嗦,不够坚定、自信。在这方面有待今后加强训练和提高

乘法分配律教学反思8

  《乘法分配律的运用》教学设计及反思

  教学目标

  (一)使学生学会用乘法分配律进行简算,提高计算能力.

  (二)培养学生灵活运用乘法运算定律进行计算的习惯.

  教学重点和难点

  能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计

  (一)复习准备

  1.口算:

  (二)学习新课

  我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)

  1.创设情境,激发学生学习积极性.

  出示102×( ).

  请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.

  2.教学例6:用简便方法计算.

  (1)计算102×43.

  这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一

  做,对比一下,找出哪种方法简便.

  在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

  (2)计算102×24.

  订正时说明怎样简算的?根据是什么.

  (3)计算9×37+9×63.

  启发提问:

  ①这类题目的结构形式是怎样的`?有什么特点?

  ②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?

  在学生充分讨论的基础上,师板书:

  提问:这题能简算吗?什么地方错了?应怎样改?

  启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.

  2.根据乘法分配律把相等的式子用“=”连接起来.

  讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?

  在讨论基础上得出:

  第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.

  第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此

  要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.

  (四)作业

  练习十四第5~10题.

  教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。

乘法分配律教学反思9

  教材分析:

  乘法分配律是北师大版小学数学四年级上册第三单元最后一节的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,教材是按照发现问题--提出假设--举例验证--归纳结论等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。

  1.上课一开始,我创造性地使用教材,创设了订校服的教学情境,使学生解决非常熟悉的生活问题、

  2.在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。

  3.本节课有一定的.亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。

  4.以后注意,学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣

  教学反思:

  乘法分配律是第三单元的一个难点。在理解、掌握和运用上都有一定难度。因此如何上好这一课,让学生真正地理解乘法分配律,并在理解的基础上运用好它?我觉得要注重形式上的认识,更要注重意义上的理解。因为单从形式上去记住乘法分配律是有局限性的,以后在运用乘法分配律的时候,遇到一些变式如:99×24+24会变得难以解决。注重意义的理解,能让学生从更高的层面上去理解乘法分配律,那么将来无论形式上怎么变化,学生都能轻松运用乘法分配律。

  北师大版的教材注重学生的探索活动,在探索中让学生自己去发现的规律,才能让他们真正地理解。本课是“探索与发现”的第三节课了,学生已经有了一定的探索能力。因此本课的设计完全围绕着学生的自主活动在进行。

  总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。

  在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。

乘法分配律教学反思10

  乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,教学是我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  一、在对本节课的教学目标上,我定位在:

  (1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

  (2)初步感受乘法分配律能使一些计算简便。

  (3)培养学生分析、推理、概括的思维能力。

  二、结合自己所教案例,对本节课教学策略进行以下几点简要分析:

  1、总体上我的教学思路是由具体——抽象——具体。

  在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  2、从学生已有知识出发。

  教师要深入了解各层次学生思维实际,提供充分的.信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

  3、鼓励学生大胆猜想。

  猜想是科学发现的前奏。学生的学习活动中同样不能没有猜想,否则,主体性探究 活动便缺少了内在的动力,自主学习的过程也成了失去目标的无意义操作。学生看到加法交换律和加法结合律,从直观上产生了关于乘法运算定律的猜想。于是,接下来的举例就成了验证猜想的必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的。这个过程是教会学生 学习与掌握探索方法的过程,是培养学生学习品格的过程。

  4、师生平等交流。

  教学过程是师生共创共生的过程,新课程确定的培养目标和所倡导的学习方式要求 教师必须转换角色。改变已有的教学行为,教师必须从“师道尊严”的架子中走出来,与学生平等地参与教学,成为共同建构学习的参与者。在以上教学片断中,教 师让学生充分经历学习过程,调动学生学习的热情:猜想——倾听——举例——验证,在 欣赏学生的“闪光”处给学生“点拨”。教师没有过多的讲授,也没有花大量的时间去 刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的知识经验,自主解决新问题,使学生的主体地位得以体现。

  5、将学生放在主体位置。

  把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题。在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。

  三、教学中的不足和改进之处:

  在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等,今后的工作中,要多向以下几个方面努力:

  1、多听课,多学习。尤其是优秀教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

  2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。

  3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。

乘法分配律教学反思11

  乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。

  一、抓住重点。让学生理解乘法分配律的意义。

  在教学时,我是按照如上的步骤进行教学的'。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。

  我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。

  二、考虑学生的学习情况,尊重他们的主观感受。

  在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。

  三、练习中注意乘法分配律的变式。

  乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1) 和74×20+74.一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。

  今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45*5+65*5和(45+65)*5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45*5+65*5=(45+65)*5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。

乘法分配律教学反思12

  《乘法分配律》是整个四年级运算定律中最最重要的一节。理解乘法分配律、并会很好运用他很重要!所以这节课重点就是在于让学生理解乘法分配律的意义。

  整堂课基本完成了教学目标,但在环节设置以及细节等方面存在很多问题。

  1、概念课亲历过程需精确、严密

  本节课是一节概念课,旨在学生通过操作整理式子(多余3)——观察式子——猜测观点——验证观点——总结定理,这样一个过程。如果后面没有反例,就证明存在这种成立的可能。而在整节课程中,学生没有明确的用具体数字验证它是成立的,所以推导出来的不具有说服力。可能会给学生一种不好的印象,猜想后就可以了,不需要验证、或者不需要反证来验证就可以了。所以概念怎么推到出来这个很重要。

  2、师生互动评判加强

  学生无论是回答好的还是不好的,对的还是不对的,都需要老师带有评判性的语言,这样对于学生的积极性都可以提高。同样的对于典型的问题可以进行当堂解答,这都是课堂生成的一个过程,需要重视学生在整个课程的反映这个很重要。

  3、语言表达方面可以优化

  在思维拓展的时候,本来应该是“如果给你一把剪刀,你可以拼吗?用最少的次数去剪,使它拼成一个长方形,你会剪吗?拼有什么要求吗?如果没有相等的两条边,你可以创造吗?”而在课堂上,表达的意思却是:“如果给你一把剪刀,你可以拼吗?拼有什么要求,如果没有,你可以创造吗?”结果导致最终在小组活动中,学生随意乱剪,并不理解活动的意义。数学讲究的是严密性以及逻辑性,所以要求要明确一些,引导性的.语言要贴切。整个语言组织,如:相等的两条表而不是相同的两条边

  4、注重细节

  在整个过程中有同学列出38×(547-347)和(547-347)×38这两个算式,它都可以用乘法分配律来讲,但同时两者也是有差异的。课堂生成的东西需要注意,并且坐好预设。将38放到前面,可以避免出错。这个小的知识点也是需要去让学生通过对比来理解的这很重要。方便他们积累避免错误。

  5、试教是一个课堂诊断的过程

  在上整堂课前,已经去试教过3个班。虽然每个班情况都不一样,但是试教就是跟孩子的磨合过程,试教过程中发现什么问题,再去改正过来,调整好。如果每个班都出现这样的问题,说明课程设置不合理。需要对教案进行修改。这也是为什么需要试教。希望在试教过程中,能够反思,自己发现问题所在。

  总的来说,这个课从制作教案、试教、修改、正式教学过程中,感谢数学组尤其是师傅对我的指点以及磨炼。试教让我明白了课件调整的重要性,一定要符合学生的认知发展规律。让我明白了数学语言是需要逻辑性,针对性以及严密性的。所以未来的路还很长,我还会再修改磨炼的。要相信好课是不断磨出来的!

乘法分配律教学反思13

  本节课的教学我主要以几何直观为切入点,引导学生通过画一画,算一算等学习活动,小组合作,共同经历乘法分配的探究过程,借助图形探知、理解乘法分配律。

  1、问题情境的创设需更贴近学生的生活。

  试讲过后与大家的感觉一样,学生对设计草莓大棚的这个话题不是特别感兴趣,接受工作室友们提出的宝贵意见后,想把情境创设改为设计学校的操场。由于学校里孩子们数量每年都在增加,孩子们喜欢的小操场越来越挤,想要扩建这个长方形的小操场,怎么办呢?这个话题与孩子们的生活息息相关,应该比上一次设计的话题更容易引起他们的关注。

  2、教学的设计要尊重已有的知识经验。

  本节课设计一始,所需的计算方法与原来学过的计算长方形面积有关。长方形的面积长乘宽,即使个别学生忘记也很容易唤醒。我鼓励学生大胆去猜想, 在计算之前先要在头脑中勾勒出长方形的'模样,激发学生在画图中梳理题中的数学信息。接下来的三次探究过程,先是教师设定长方形增加的长,再次是学生自己设定长度,再到后来自己设定三个量,给学生充分的想象和发挥空间,发挥学生主体的主动作用,即使学生在研究中遇到困难,有小组合作交流讨论环节也使学生之间有了互相学习和提高的过程。

  学生在已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在得出结论的过程中,有的同学用到了文字说明,也有同学是符号表示,还有的是字母表示,无论出现得出的哪种结论,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  在学生展示汇报的过程中,虽然字母表示的方法更清晰,大家更喜欢,但课后觉得能用文字表述其实是更难的一件事,对这样的孩子应该在课堂上再多给学生一些鼓励与肯定,学生的学习兴趣会更浓,他们学到的东西可能也会更多。

  3、在具体操作中完成由具体到抽象的思维演练。

  孩子们自己填写的数字各不相同,在不同的计算方法和有不同的计算结果中,使学生感受到大量在实例计算后,大胆地完成了由猜想到验证的过程。猜想是科学发现的前奏。学生的学习活动中不能没有猜想,否则,主体性探究活动便缺少了内在的动力,自主学习的过程也成了失去目标的无意义操作。接下来的举例就成了验证猜想的必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的。这个过程是教会学生学习与掌握探索方法的过程,是培养学生学习品格的过程。

  在研究的过程中,如何利用小组合作资源,把研究中遇到困难的,兴趣保持不下去的同学的积极性再调动一下就更好了。

  课堂学习的过程,一切以师生间,生生间建立的平等交流这个平台才得以顺得完成,教学过程是师生共创共生的过程,师生成为共同建构学习的参与者。在上述的教学活动中,教师让学生充分经历学习过程,调动学生学习的热情:想象——猜想——举例——验证,在欣赏学生的“闪光”处给学生“点拨”。师生在课堂交流中才得以共同成长。

乘法分配律教学反思14

  学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。针对这些情况,在教学中应该注意什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学时我们往往注重等式两边的外形特点,即a×(b+c)=a×b+a×c缺乏从乘法意义角度的理解。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)×3=+2×3+7×3是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)×3=2×3+7×3

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两个数的和乘以一个数或两个积的和。在练习题中(40+4)×25与(40×4)×25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?

  3、让学生进行一题多解的'练习,加深对乘法结合律和乘法分配律的理解

  如:125×88;101×89你能有几种方法?125×88①竖式计算②125×8×11③125×(80+8)④(100+25)×88等等。101×89①竖式计算②(100+1)×89③101×(100-1)④101×(80+9)⑤101×(90-1)等。对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到"用简便计算法进行计算"成为学生一种自主行为,并能根据题目的特色灵活选择适当的算法的目的。

  4、多练

  针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。+

  对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。

乘法分配律教学反思15

  乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律和结合律的基础上进行教学的。在五大运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律进行简便计算 。

  成功之处:

  1.本课在教学情境的设计上没有采用课本上的主题图,而是选取学生熟悉的买校服情境:这学期学校要换新校服。上衣每件28元,裤子每条12元。我们班共需缴校服费多少元?学生独立思考,同位交流,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(28+12)×44=28×44+12×44。

  2.加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的'形式。通过多种形式的练习让学生深入理解乘法分配律的意义。

  不足之处:

  1.在总结乘法分配律时没有把结构说的很透彻,导致学生出现在练习时有一个同学在同步学习的练习题中把连乘算成乘法分配律。

  2.学生的语言叙述不熟练,导致学生虽然会背用字母表示的式子,但是不会应用。

【乘法分配律教学反思】相关文章:

《乘法分配律》教学反思01-15

乘法分配律教学反思02-10

《乘法分配律》教学反思精选15篇03-05

《乘法分配律》教学反思(15篇)02-15

《乘法分配律》教学反思15篇02-07

乘法分配律教学反思(15篇)02-12

乘法分配律教学反思15篇11-11

乘法分配律教学反思集锦15篇03-26

《乘法分配律》教学反思【汇总15篇】08-10