“圆的面积”教学反思
身为一位到岗不久的教师,我们的任务之一就是教学,借助教学反思我们可以学习到很多讲课技巧,那么教学反思应该怎么写才合适呢?以下是小编精心整理的“圆的面积”教学反思,希望对大家有所帮助。
“圆的面积”教学反思1
圆的面积是小学六年级数学下学期教学的重点内容。我教小学毕业班已经十余年了,自然这节课我讲的也不下十余次了,以前在偃师市讲过,也在洛阳市也讲过。虽然每次都反映不错,可我总觉得不太满意,总觉得这节课的容量少了点,今年我决定改变以往的教学方法,增加课堂容量。
以前我是这样安排课堂结构的:谈话引入圆面积后,让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,然后教师动画演示,从而得出采用转化图形的方法,把新的图形转化成以前学过的图形来研究,使学生从中受到启发,进而想到把圆形也转化成以前学过的图形来研究。然后通过学生的动手操作、自主探究、合作交流,最后自己推导出圆面积计算公式。让学生在课堂上把8等份圆、16等份圆,先剪一剪、再拼一拼,在学生动手操作后,教师再动画演示32等份圆、64等分圆、128等份圆所拼成的图形更接近长方形。最后想一想:所拼近似长方形的`长和宽与圆的什么有关系(近似长方形的长相当于圆周长的一半,宽相当于圆的半径),由长方形面积公式继而推导出圆面积公式。圆面积公式推导出来后,时间已所剩不多,学生运用公式解决问题的时间很少。环形的面积计算需要下一个课时进行。
今年我经过思考,决定这样做:让学生提前预习,小组内3、4号同学做8等份圆,1、2号同学做16等份圆,两人所做圆形的大小一样,所涂的颜色也一样,其中一个用剪刀剪好,一个不剪,以备上课时使用。
今年的课堂结构调整为:一开始由本节主题图引入,已知每平方米草皮8元钱,一个圆形草坪需要多少元钱?要解决这个问题就要求出圆的面积,由此引入新课。紧接着出示本节课的学习目标。接下来依然让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,渗透转化思想,使学生自然想到把圆形也转化成以前学过的图形来研究。然后让学生拿出自己制作的学具,先俩俩合作(1、2号合作,3、4号合作),再四人小组合作,在课桌上拼图。通过几次拼图发现,所拼近似长方形的长近似于圆周长的一半,宽近似于圆的半径。各小组展示后我用演示4等份圆,8等份圆、16等份圆、32等份圆、64等份圆……所拼成的图形,学生迅速发现,把圆等分的份数与多,拼成的图形越接近长方形,自己很快就推导出圆面积计算公式。这样就节约了大量的时间来进行公式实际运用的练习了。本节课学生不但会计算圆的面积,还会计算环形的面积……这样环环相扣,学以致用,学生学习积极性极高,既熟练的掌握了公式,又有了自主解决问题的成就感,圆满完成本节的学习目标。
不过这节课,也暴露出了一些问题:例如学生在计算平方的时候,出错较多,6的平方,应该是36 ,很多学生错误的把它算成12 ,这说明我对学情分析还不透彻,再例如学生的书写格式也不够规范等,所有这些还有待今后进一步提高。
“圆的面积”教学反思2
教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册67—69页。 教学目标:
知识目标:理解圆面积的含义,让学生经历和体验圆的面积公式推导过程,通过操作、观察、、引导学生推导并掌握圆面积的计算公式,解答一些简单的实际问题。
能力目标:培养学生观察、分析、类比、推理和概括的能力,发展学生的空间观念,并渗透极限、转化,化曲为直等数学思想方法。
情感目标:通过小组合作交流,培养学生的合作精神和创新意识,动手实践和数学交流的能力,体验数学探究的乐趣和成功。
教学重点:掌握并理解圆面积的计算公式。
教学难点:引导学生用多种方法推导概括圆面积公式。
教学准备:圆纸片、剪刀、胶棒,实物投影 , 多媒体课件。
教学过程:
一、创设情境,引出问题
课件演示:(牛吃草)看到这个画面,你能获得哪些数学信息?那牛吃到草的面积是多少你知道吗?这节课我们大家就一起来探讨圆的面积。)(板书课题)
二、回顾旧知,孕优新知
在研究圆面积前我们先来做个思维训练,回顾以前学过的关于圆的知识。请同学们拿出圆纸片,找到你了解的知识,并用字母表示它们的名称。(课件演示)
以前我们推导平面图形面积公式时都用到一种数学方法---转化法,就是让新知识转化为旧知识,利用已有的知识来研究新知识。
三、研究新知,加深理解
1、课本上就用这种转化法来推导圆面积公式的。大家仔细阅读一下课文,看看你们小组能学到什么,还有什么问题需要大家一起来帮你解决呢?(强调分成偶数等份)
出示自学提纲:
(1)什么叫圆的面积?
(2)书上是怎样推导圆面积的?
(3)为什么是近似的平行四边形?
2、 小组合作学习:同学们已经有了自己的研究方法,可以利用一些学具开始探究。可以独立研究,也可以和有相同想法的同学自由合作。研究的过程可能会有困难,老师相信你们,一定不怕困难勇于探索,遇到问题也可以向老师寻求帮助。
出示小组合作学习提纲:(指生读)
(1)你摆的是什么图形?
(2)你摆的图形的面积与圆的面积有什么关系?
(3)所摆图形的各部分相当于圆的什么?
(4)你是如何推导出圆的面积的?圆的面积公式是什么?
(5)你能不能转化成其它图形推导圆面积公式?
(你想把圆转化成什么图形)
3、哪个小组愿意把你们的研究成果给大家展示一下?
请大家关注同学们的发言,从中你一定会受到启发或发现问题。
小组汇报:①分成4份。②分成8份③分成16份(学生叙述拼的过程,教师板书推导公式)
4、我们回忆一下圆的面积公式是怎样推导出来的? (指生叙述)
如果给你一个圆,你能求出它的面积吗?(举起一个圆)谁能求出这个圆的面积?那如果给你具体数据,你们想要什么具体数呀?都要几个?(你的贪心还不小呢!幸好没要面积,那样就不用计算了。如果让你随便挑,你要哪个数据?)能说说要半径的理由吗?(你还真会找捷径)那如果老师只给你周长怎么办啊?(根据周长公式求半径)看来,求圆面积的关键条件是什么?(半径)那我们再来读一遍公式好吗?
好,同学们还记得课前那头正在吃草的小牛吗?让我们一起来算一算它最多能吃多少草好吗?(课件演示)
(2)如果给出直径你会算吗?出示例1。(指生读题)
四、巩固深化,实际应用
(1)不错,那老师要看看谁的反映最灵活计算能力最强(口答:给半径、直径求面积)。
(2)非常好,谁来给大家读读这道题(应用题:给周长求面积)
(3)拿出课前折叠的圆形纸片,自己动手测量所需的数据后计算圆的面积。互相说说计算圆面积的依据是什么?
(4)智力冲浪:假如这块地真的送给你,你打算怎样为自己设计一个美丽的家园?
五、发散思维,拓展知识
小组合作学习中还有一个问题是吧?好,哪个小组拼出了和大家不同的图形?(可以拼出近似三角形、平行四边形、梯形。将学生的研究结论贴在黑板上)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨好吗?
六、总结反思,课外延伸
好了今天这节课我们就到这里,你觉得自己今天表现怎么样?你觉得同学们的表现怎么样?你觉得老师表现怎么样?课堂上你高兴吗?这么高兴的一堂课你都有什么收获啊?
圆面积教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的.
自主探究创造条件。
1. 让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
2.引导学生主动探究。学生以小组为单位,通过合作拼摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
3. 数学源于生活,服务于生活。我利用一张丢失了圆形井盖的图片引入,创设情景,让学生从中发现问题;当推导出圆面积的公式后,我又引导学生利用自己推导出的公式解决刚才的问题。在整个教学过程中,始终以这个情景组织教学。让学生知道数学来源于生活,服务于生活,数学就在我们的身边。整个学习过程不仅是一个主动学习的过程,更是一个“猜想——验证”的过程,一个发现学习、创造学习的过程。学生在观察、猜测、操作、验证、归纳的过程中理解了一个数学问题是怎样提出的,一个结论是怎样猜测和探索的,学生学会的不仅仅是一个数学公式,更重要的是学生学会了合作、交流,学会了像科学家一样进行思考、研究,学生的探索、创新精神得到了落实
“圆的面积”教学反思3
《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生运用已有的知识经验来实现“新知到已知”的转化,最后推导出圆的面积计算公式。
在教学本课时,我努力做到了以下几点:
1、重视学生活动经验的积累。先引导学生用“数方格”的计算圆面积,感受到其方法既不方便又不准确,再启发学生“能否将圆转化成我们学过的图形进行研究”。在此过程中,充分调动学生已有的知识经验,回忆平行四边形的面积计算公式的推导过程,以实现学生对“新知转化为已知”这一数学学习方法的迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经历“转化”的过程,进一步促进了学生对这一方法经验的内化。
2、重视培养学生“数学化”的.口头表达能力。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的发现,让学生深刻感受到化曲为直中“无限接近”的极限思想。在发现新拼成的平行四边形的与圆的联系后,引导学生用“因为……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培养了学生思维的严密性和语言表述的准确性。
3、充分发挥多媒体课件的作用。在教学中,教师通过课件演示,直观形象地再现了拼成的平行四边形与圆各部分之间的联系(底相当于圆周长的一半,高相当于圆的半径),轻松化解了教学难点,让学生教容易地推导出了圆的计算公式。
不足之处:
1、在引导学生“把圆转化成已学过的图形”进行面积研究时,教师缺乏有效的启发——为什么要把“曲”化为“直”,缺乏必要的指导——圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、由于担心学生知识底子薄,无法按时推导任务,教师在引导学生发现“拼成的新图形和圆的联系”时,牵的多,放的少,抑制了学生思维的主动性、独立性和创造性。
“圆的面积”教学反思4
教学内容: 圆的面积 教学目标:
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。
2、理解圆的面积公式的推导过程,感受转化的数学思想。
3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重难点:
重点:理解和掌握圆面积的计算方法。 难点:圆面积公式的推导。 准备:圆形纸片 教学过程:
一、谈话引入
明确圆的面积的含义(在黑板上画好一个圆),谁上来指一指:哪是这个圆的周长?(生用粉笔比划圆的周长,强调起点即终点。)对于一个平面图形除了研究它的周长,一般还可以研究它的什么?(面积)你能指出哪是这个圆的面积吗?(生用手比划)那么谁能说说什么叫做圆的面积呢?(引导学生用自己的话说一说,逐步规范:圆所占平面的大小叫做它的面积。)
导入课题:圆的面积
二、引导探究
1、猜测圆的面积与半径的关系。 (1)猜测圆的面积与什么有关系?
(在黑板上再画一个小一点的圆)比一比,这两个圆的面积哪个大一些?为什么?你认为圆的面积的大小与什么有关系?
(2)猜测圆的面积与半径有什么关系?
正方形的面积是半径的平方的4倍,圆的面积比正方形的面积要小。因此圆的面积可能是半径的平方的3倍多,甚至有可能会想到圆周率是3.1415……
2、探究圆的面积与半径的关系——公式推导 (1)回顾以前学过的平面图形的面积推导过程。
A、长方形、正方形,直接用面积单位去量,找规律得到的;
B、平行四边形、三角形、梯形等不能用面积单位去量。因为不能用面积单位去密铺,用的是转化的方法。
(2)统一认识,寻求转化的方法
A、圆是曲线图形,也不能用面积单位去密铺,应该运用转化的方法;
B、商讨转化的方法:剪开——化曲为直;沿半径剪开——便于研究面积与半径的关系。
(3)自主探究:剪一剪,拼一拼,找一找,推导出圆的面积计算公式。 A、拼成近似的长方形
同学们:请你以小组为单位,对照课本合作完成以下填空: (1)我们把圆分成若干等份,剪开后,拼成一个近似的( )形。 我们发现分成的份数越多,拼成的图形就( )。 (2)拼成的( )形的面积与圆形面积是( )的。 长方形的( )相当于圆的( ); 长方形的( )相当于圆的( )。
长方形的长等于圆周长的一半( r)长方形的宽等于圆的半径(r)
长方形的面积 = 长 × 宽
圆的面积 = 圆周长一半( r)×半径(r)
S = π r2 B、拼成近似的三角形
三角形的面积=底×高÷2 圆的面积 =(圆周长的1/4) ×(4个半径)4r÷2 C、拼成梯形的下去再探讨 (4)交流,统一认识 A、公式:S=πr2
B、圆的面积与什么有关?回到课始的猜测。
三、总结
本节课你有什么收获?
四、实践
1、已知r=4cm,求S。
2、已知d=8cm,求S。
板书设计:
圆的面积
圆所占平面的大小叫圆的面积。
长方形的面积 = 长 × 宽
圆的面积 = πr × r = πr2
《 圆的面积》教学反思
济渎路 翟彩艳
圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。
一、感受圆的周长与面积的不同
本课开始,我先让学生比较圆的`周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、学具演示,激发探究
通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该以上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。
三、分层练习,体验运用价值
结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地
参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。
在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。
“圆的面积”教学反思5
本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
一、故事激趣,渗透“转化”
本课开始,我引导学生回忆简述了“曹冲称象”的故事,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、演示操作,加深理解
当学生通过第一个操作活动,得出圆的面积是半径平方的`3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。
这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。
“圆的面积”教学反思6
课堂教学中培养学生创新技能必须依靠潜移默化的熏陶方法,让学生在不断经历的学习过程中,感悟到创新思维的技巧。下头是我对本课教学的反思:
一.以旧促新
情景导入,认识圆的面积之后,自然是想到该如何计算圆的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的`“再创造”做好知识的准备。
二.转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。研究学生的实际情景,电脑先演示2、4、8等份圆,分别拼成一个近似的平行四边形,让学生观察它越来越像什么图形?为什么说“像”平行四边形?让学生发表自我的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎样样?电脑继续演示16等份的圆,放在一齐比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎样样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,最终它就会变成长方形。完成另一个重要数学思想—极限思想的渗透。
三.公式推导
长方形的面积学生都会计算:S=ab引导学生观察长方形的长和宽与圆有什么样的关系:发现长=πr,宽=r,长方形的面积=圆的面积,从而推导出S=ab=πr2
四、重视合作
重视小组学习,促进合作交流。实践证明,小组讨论有利于全体学生主动性的发挥,有利于师生之间、学生之间的信息交流,有利于不一样思维的碰撞。对圆的推导过程的创新比较适合运用合作探究的学习方式。在这节课的教学中,教师从学生手中的材料出发,让学生摆一摆,结合自我的创新说一说,经过小组合作进行探究活动,既鼓励学生独立尝试,又重视学生间的合作互助,给学生供给了多向交往的机会,提高了学生合作学习的意识。学生在学习中互相交流,提高了观察、分析及解决问题的本事。
五、培养创新
变传统的知识传授过程为“解决问题”序列的探究过程。教学过程中,创设一些对学生来说需要开辟新路才能解决的问题情境,对于提高学生的创新技能是十分有益的。六、练习设计
对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题公式公式。
七、存在问题
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应当改善的地方和努力的方向。
“圆的面积”教学反思7
教学内容:人教版六数上第66页、67页
教学目标:
1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。
3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.
2.会正确计算圆的面积。
教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆
教学过程:
(课前游戏)
猜谜:前面有一片草地(打一植物)
草地上来了一群羊(打一水果)
草地上有一群羊,突然来了一群狼(打一水果)
师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。
一、 导入:
师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)
二、 认识圆的面积:
1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。
师:圆表面的大小就叫做圆的面积。
2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?
生:一个圆面积大,一个圆面积小。
师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。
生:半径或者直径越长,圆的面积就越大。
师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。
三、观察与尝试猜测:
1.(出示正方形与圆的课件)
师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多
少呢?
生:大正方形的面积是4r,小正方形的面积是2r。
2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?
生:圆的面积比大正方形的面积小,比小正方形的面积大。
师:那就是说圆的'面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?
生:3r。
师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。
四、 小组合作、拼摆。
1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?
生:底*高。S=ah。
师:还记得平行四边形的面积计算公式是如何推导出来的吗?
是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。
师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222
2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?
生:三角形或者等腰三角形。
师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!
提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。
学生开始小组合作。
3. 汇报合作结果。
师:你们都拼成了什么样的图形?上台来展示一下吧。
生分组上台展示。
要求学生汇报自己是怎样拼的,拼成了一个什么图形。
师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?
生:分得越多,越接近长方形。
五、 面积计算公式推导:
1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!
2.师:找到答案了吗?
生:长是πr,宽是r。
师:长方形的面积呢?请同学们在练习本上写一写。
那圆的面积呢?也写一写,读一读吧。
学生汇报。师板书。
3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?
4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?
生:半径。
师:知道什么也可以求出圆的面积呢?
生:直径、周长。
师:下面我们就来试一试吧!
六、 巩固练习。
1. 平方的口算练习。
1 2 3 4 5 6 7 8 9 10 20 3022222222222 2
2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。
3.圆形花坛的直径是20米,求圆形花坛的占地面积。
学生先汇报思路,再在练习本上完成。
4. 树干的周长是125.6米,求树干的横截面积是多少?
学生先汇报思路,再在练习本上完成。
七、 总结:
师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?
“圆的面积”教学反思8
提问:请大家想一想,我们在推导平行四边形面积计算公式时,用的是什么办法?(割补法)(多媒体动态演示)
(边演示边讲解:沿着平行四边形的高剪开,将剪开的三角形移至右边补上,拼成一长方形,根据原来平行四边形与拼成的长方形之间的关系推导出平行四边形面积公式)。
导入:把所学图形进行分割、拼摆转化成学过的图形,然后根据学过图形的面积计算公式推导出新图形的面积公式,今天我们也按这种思路来推导圆的面积计算公式。
割补图形(四人小组):
1.将圆4等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
2.将圆8等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
3.将圆16等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
4.将圆32等分,然后拼插起来,观察拼接成的图形的边的.形状是怎样的?
检查操作结果(多媒体演示):
把圆平均分成4等分,拼成的图形很不规则。
把圆平均分成8等分,拼成的图形近似于平行四边形,边的形状显波浪形。
把圆平均分成16等分,拼成的图形更近似于平行四边形,边的形状较直。
把圆平均分成32等分,拼成的图形非常近似于平行四边形,边的形状更直。
请同学们闭上眼睛想一想:如果我们继续将圆等分成64份,128份,……结果会怎样呢?(对,如果把圆面等分的份数越多,那么拼成的图形会越接近于长方形)
(请睁开眼睛看屏幕,多媒体演示64等分)
推导公式:
刚才我们把圆转化成了长方形,那么如何根据长方形的面积推导出圆的面积公式呢?
我们以把圆16等份,拼成长方形为例来推导(同桌讨论)
拼成的近似长方形的宽相当于圆的什么(半径)
拼成的近似长方形的长相当于圆的什么?(周长一半,c/2=2πr/2=πr)
圆转化成长方形时,尽管图形发生了变化,但什么没变?
因为圆的面积和长方形面积相等,
所以长方形的面积=长×宽
圆的面积=πr×r
=πr·r
学生复述、多媒体演示,集体复述:
近似长方形的长相当于圆的周长的一半(闪动),
近似长方形的宽等于圆的半径(闪动)
长方形的面积=长×宽
所以圆的面积=πr×r
(r×r可以写作r的平方,表示两个r相乘)
用字母表示:S=πr·r
教后反思:学生的学习能力不是靠传授形成的,而是在教学活动中,靠学生自己去“悟”、去“做”、去“经历”、去“体验”的。圆面积计算公式的推导是教学的一个难点。本节课通过直观演示和学生动手操作等方法,充分运用多媒体课件辅助教学,给学生以生动、形象、直观的认识,通过学生多次不同的剪拼,采用转化、想象等,利用等积变形把圆的面积转化成学过的平面图形,逐步归纳出圆的面积计算方法。这样多层次的操作,多角度的思考,既沟通了新旧知识的联系,又培养了学生的推理能力。这个环节,让学生充分经历了操作、观察、想象、推理、反思等数学活动与数学思考过程,明确了圆的面积与半径之间的关系。充分的探究活动,既培养了学生的空间想象能力,也培养了学生的合情推理能力,有效促进了学生思维能力的发展。<
“圆的面积”教学反思9
圆面积公式的推导是在学生掌握了平行四边形、三角形、梯形的面积公式推导后进行的。所以在设计教学时,特别注意遵循学生的认知规律,重视学生获取知识的过程,重视从学生的生活经验和已有知识出发进行教学设计,为学生自主探究创造条件。
为学生探究做好铺垫。先让学生回忆一下以前学过的平面图形的面积公式的推导方法,并利用多媒体课件再现推导过程。学生在回顾旧知识的.过程中,领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成学过的图形来推导的,从而渗透转化思想,并为后面自主探究推导圆的面积作好铺垫。
引导学生主动探究。让学生按照老师的要求来推导面积公式,学生以小组为单位,通过合作拼摆,把圆转化成已学过的图形,并在操作过程中,学生边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=周长的一半×半径。当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在学生推导出面积公后,我又利用课件的演示,引导学生观察发现“等分的份数越多,拼成的图形就越接近于长方形”,从而渗透极限的思想。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来。学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由地发展,亲身经历了知识的迁移过程,体验了成功的喜悦。
通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能培养学生逻辑思维的能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
“圆的面积”教学反思10
“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,渗透极限思想和知识之间是存在普遍联系的观点。上课前我要求学生对这一内容做一个研究小报告,目的在于:对于优等的学生课前自己进行研究,学困生不会自己研究可以也通过看书抄一抄,通过抄也会有印象。通过这一做法,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
一、复习旧知,渗透“转化”
本课开始,让学生回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、演示操作,加深理解
当学生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的'关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。
不足之处:给学生的时间还是少了一点,怕上课时间不够,也不敢给学生放了太多了空间,怕收不回来学生的注意力,课堂上学生发言的能力有待提高,有的学生回答不到点上,以后再这方面也会多引导学生,并培养学生的口头表达能力。这些不足将在以后的教学中逐步改进。
“圆的面积”教学反思11
1、圆的面积是在圆的周长的基础上进行教学的,而周长和面积又是圆的两个基本概念,学生必须明确区分。
通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
2、渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:
新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,就可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的`知识储备,为新知的“再创造”做好知识的准备。
3、在教师的引导下,使学生通过自己主动的观察、思考、交流。
运用已有的经验去体验新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
“圆的面积”教学反思12
“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫{做故“无心插柳柳成荫”教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的`需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,你们认为这节课我们要解决什么问题呢?“学生积极发言”想解决圆的面积如何计算;想解决圆的面积的计算公式是如何推导的;想学习怎么计算圆的面积等等” 。
学习目标明确后,我发现孩子在研究的时候都井然有序,没有不知道该如何入手的,都明确自己在讨论什么,要解决什么问题。在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生提供充足的时问、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我的收获是教学中的应变能力提高了,不同的学生给了我不同的体会。当然也发现了自己的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改进的地方;在提出一个问题后应给予学生一定的思考时间,不要过急。在今后的教学中我会深深记住这次巡讲,继续改进自己的教学水平。
“圆的面积”教学反思13
《圆的面积》这节课是北师大版六年级数学第一单元的一个重难点知识。教学中对圆面积公式的推导过程中,我运用多媒体辅助,小组合作,个人演示的综合教学。对于本节课的备课我做了很多的工作,下载课件,找教具…..很顺利的完成了教学任务,但课后结合学生的练习,课堂反应及自己的'感悟,进行一下反思,作为自己今后课堂教学的提高改进。
一、多媒体的使用一定要恰到好处,并不是用了多媒体就是好课。
这节课一开始我直接打开多媒体,和学生一起回忆了学生以前学过的推导平行四边形和三角形面积公式的过程,以此导课,(想:五年级刚学的应该会。)优点:学生课堂注意力集中,(农村小学上课很少用多媒体)。缺点:这个过程其实学生并没有来得及回忆,对播放的内容并没有应有的知识准备,因此并没有动脑思考,导课成了过程。在今后的教学中一定要备学生,让学生有牢固的知识准备,培养学生提前预习的好习惯,多媒体的使用要在学生思考,教师小结讲解中出示,激发学生从想到看再到想。
二、小组合作要注重学生的自主性和创新性,教师不要操之过急,急于下结论。
这节课中对圆的“化曲为直”是学生不易突破的地方,我先让学生小组合作探究学习,讨论如何把圆转化成已学图形。在这里耽搁了很多时间,当一个组学生将圆转换成平行四边形时(可能是提前看了课本),我进行了表扬,没留更多时间让学生探索,虽说学生后来都那样推导了完成了课本要求的推导,但没有孩子提出圆还可以转换成三角形,长方形的这些情况。让我觉得是我操之过急了,如果这时教师能给以及时的启发点拨,让学生就可以得到拔高,扩大学习探索的思路。在今后的教学中作为教师一定要注重培养学生的创新意识,注重个性差异。
三、教学中要承认差异性,对学生的要求应不同 这节课的最后我让学生拿出学具将刚才小组合作的推导过程每人演示一遍,目的是加强理解,巩固所学,这时我的提问让一个学生没回答上来,我很恼火,觉得用了多媒体演示,小组合作交流,个人演示,竟然不会,很失望,弄的学生尴尬。现在想到学生当时的眼神,我觉得自己缺少了耐心,忽视了差异性,今后的教学中我一定要把握好自己的情绪,不能因为自己用心教了就要求每一位学生都能当堂理解运用。
教学就是实实在在的培养人的过程,作为教师的我一定要为学生而教学不能一味的完成教学任务。
“圆的面积”教学反思14
一、教学目标
1、知识与技能
(1)知道圆的面积公式推导过程;
(2)会用圆的面积公式计算圆的面积;
2、过程与方法
经历动手操作讨论等探索圆的面积公式的过程;
3、情感态度与价值观
积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数
学思想。
二、教学重点:
圆的面积的计算
三、教学难点:
推导圆的公式的过程;
教具准备:多媒体课件、圆片、胶水、剪刀
四、教学过程:
(一)、创设情境,导入新知
1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)
2、师:我们要求小朋友的活动场地有多大,就是求圆的什么? (圆的面积)
3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。
4、设疑:那么圆的面积怎样求呢?
5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。
6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?
(1)、设疑导入,激起学生学习的.兴趣.
(2 )、复习渗透转化的思想,为推导圆的面积埋下伏笔.
(二 )合作探究
把圆形转化成以前学过的图形探究圆的面积公式
师:同学们开动脑筋,小组合作看能把圆转化成什么图形?
(1) 学生动手操作;
(2) 交流演示各组拼出的图形。
(3)教师用课件演示。
教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=
问: 那么要求圆的面积必须知道什么条件?
(三)解决问题
(一)、已知圆的半径,求圆的面积
例1、一个圆形花坛的半径是3m,它的面积是多少平方米?
(二)、已知圆的直径,求圆的面积
例2、圆形花坛的直径的20 m,它的面积是多少平方米?
(三)、已知圆的周长,求圆的面积
例3、一个圆形储水池的周长是25.12 m,它的占地面积是多少平方米?
四 巩固练习
1、判断对错:
(1)直径相等的两个圆,面积不一定相等。。 ( )
(2)两个圆的周长相等,面积也一定相等。 ( )
(3)圆的半径越大,圆所占的面积也越大。 ( )
2、根据下面所给的条件,求圆的面积。
(1)半径3分米
(2)直径20厘米
五、知识拓展
在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?
六、总结:学生谈收获
反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。
“圆的面积”教学反思15
这节《圆的面积》,是义务教育课程标准实验教科书六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。 通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识的学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
一、明确概念:
圆的面积是在圆的周长的基础上进行教学的,首先利用课件演示 马能吃到草的图 让学生直观感知圆的面积。并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二、以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算圆的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,为新知的“再创造”做好知识的准备。 ()根据学生的.回答,选取其中的一个平面图形:平行四边形,让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,就可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
三、转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,转化成学过的平面图形。让学生拼并观察它像什么图形?让学生发表自己的意见,充分肯定学生的观察。引导学生闭上眼睛,如果分成 32 等份会怎么样? 64 等份呢? …… 让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就愈接近长方形,完成另一个重要数学思想 — 极限思想的渗透。
四、 公式推导
长方形 面积学生都会计算: s=ab 引导学生观察长方形的长和宽与圆有什么样的关系:发现 a =c/2 =πr b=r, 长方形的面积 = 圆的面积,从而推导出 S=πS=π×r×r =πr2 。 通过实验操作 , 经历公式的推导过程 , 不但使学生加深对公式的理解 , 而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神 , 学生在求知的过程中体会到数形结合的内在美 , 品尝到成功的喜悦。面积计算教学反思多边形面积教学反思圆的面积教学反思
【“圆的面积”教学反思】相关文章:
圆的面积教学反思02-27
圆的面积的教学反思05-20
《圆的面积》教学反思03-13
圆的面积二教学反思10-25
圆的面积教学反思(优选)07-06
《圆的面积》教学反思10篇02-01
《圆的面积》教学反思(15篇)03-16
圆的面积教学反思精选15篇06-16
圆的面积教学反思(精选15篇)04-14