当前位置:9136范文网>教育范文>教学反思>分数乘法教学反思

分数乘法教学反思

时间:2023-06-14 13:20:07 教学反思 我要投稿

分数乘法教学反思【精】

  作为一名人民老师,我们的任务之一就是教学,教学的心得体会可以总结在教学反思中,那么什么样的教学反思才是好的呢?以下是小编为大家收集的分数乘法教学反思,希望对大家有所帮助。

分数乘法教学反思【精】

分数乘法教学反思1

  在教学一个数乘分数的意义和分数乘分数的计算法则中,通过操作、演示、观察、比较等活动,即先形象具体,后抽象概括,帮助学生理解分数乘法的意义和算理。在教学中,教师要引导学生操作,直观感悟,使学生参与到教学中来,充分发挥学生的主动性,调动学生的积极性。

  从已学知识的基础上出发,利用知识的迁移和扩展,理解分数乘法的意义。教学时先通过对整数乘法的复习,使学生明确整数乘法的意义,再充分利用直观图,使学生清楚地看出可以用加法计算,也可以用乘法计算。

  引导学生把直观操作与抽象推理相结合,理解分数乘法的`计算法则的推导过程。

  由于分数乘法的计算法则比较抽象,学生理解起来有一定的困难。教学时我尽量加强直观,变抽象为形象,多给学生创造对手操作的机会,激发学生学习的兴趣,使他们主动地参与到教学过程中来。在直观操作的基础上在推导出分数乘分数的计算方法,进而概括出分数乘法的法则。

  培养学生良好的计算习惯和认真的学习态度。学生掌握这部分内容并不困难,但要通过这部分内容的学习和练习,培养其认真审题、注意运算顺序、观察数字特点,、选择简便方法等良好的计算习惯和严谨认真的学习态度,为他们以后的学习打好基础。

  在教学过程中,要以教师为主导,学生为主体,为学生创造参与教学活动的情景,通过操作、演示、观察、比较培养学生的抽象概括能力,通过分析讨论,培养学生的分析综合能力。同时,教学过程中要注意抓住新旧知识的内在联系,使学生了解知识間的横向联系。学生在联系和比较中找到了知识与知识之间的联系,并获得探索知识的体验。

  还要重视学法指导,培养学生的内推力。

分数乘法教学反思2

  本单元的教学,分数乘法解决问题是一个重点内容。既“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。

  此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。

  具体做法:在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。

  在教学中,我强调以下几点:

  (1)让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

  (2)强化分率与数量的一一对应关系。并根据关键句说出数量关系。

  (3)帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。

  对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。

  教学中也显露出一些问题。主要存在于:

  1、练习题与例题、在同一题的`不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。

  2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。

  3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练。

分数乘法教学反思3

  时间过得很快,转眼间一个月的时间又过去了,第一单元的教学也基本上完成了。回顾分数乘法这一单元的教学,在备课时一直被如何处理分数乘法意义困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。

  在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。

  此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。

  本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的'反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。

  此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。

分数乘法教学反思4

  1.明确教材的地位和作用。这部分内容是在学生理解并掌握分数乘法的意义以及分数乘整数的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复杂的分数应用题也是在它的基础上扩展的。因此,使学生掌握这类问题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。

  2.应用数形结合的思想。用线段图或其他方式的示意图帮学生理解“淘气的`苹果是小红的二分之一”。

  3.运用类比迁移的方法。学生理解了6的二分之一的意义,在此基础上,提出“6个苹果的三分之一是多少”这一问题,让学生独立解决,由于学生有了前面的基础,学生解决起来水到渠成。

  4.营造民主和谐的教学氛围。教学中予以学生开放的空间,从复习中选数计算到用不同的方法解应用题,到练习中求小兰、小强的年龄,始终将学生置于享有充分民主和谐的氛围中,置于生动活泼、极富个性的数学活动中,提高了学生学习的兴趣。

  5.发挥团队合作精神。教学中以小组合作为主,学生在合作讨论中得到了不同程度的发展。

  6.鼓励学生用多种方法解题。通过用多种方法解题并进行比较,让学生亲身体会乘法解决问题的优越性。

  另外要给学生提供充分的思维空间和交流机会,充分发挥学生的主体作用。

分数乘法教学反思5

  一、让学生在探索的过程中理解:

  在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算” 。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。

  在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的'策略才能达到是活动有效的目的。例如在本单元的分数乘法(1)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(3)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。

  二、回顾学生所做作业,出现问题集中表现在以下几点:

  1、分数乘法的计算中,学生的约分错误较高,尤其是有公因数13、17、19的,好多学生都不能发现。

  2、在教学中我注重了对单位“1”的理解、根据分数意义来分析题意,重视单位化聚的计算方法的复习,以及两步计算的求一个数的几分之几是多少的应用题的重点评讲,但是部分学困生对于一个数是另一个数的几分之几与一个数比另一个数多几分之几理解还是不透。

  三、采取应对措施:

  1、分数的约分进行强化训练。

  2、复习分数乘法应用题时,根据分数乘法的数学模型,说出问题也就是求什么,写出题目中的数量关系。教学中要注意用线段图表示题目的条件和问题,强化分率与数量的一一对应关系,这有利于学生弄清以谁为标准,以及分率和数量之间的关系。

  问题可以引发思考,思考促进改变方法,得法扭转教学局面。说明教师教学不怕有问题,有了问题想办法解决就会使教学损失减少到最小。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态,根据实际情况来教学,提高教学质量。当然,教学前的准备细致周到,教学失误的可能性就会更小。

分数乘法教学反思6

  分数乘法应用题教学反思“求一个数的几分之几是多少”的乘法应用题是学生已经掌握了分数乘法的计算方法和分数乘法的意义上进行学习的。它是分数应用题中最基本的、最基础的,不仅分数除法一步应用题以它为基础,很多复合的`分数应用题都是在它的基础上扩展的。因此,学生掌握这种应用题的解答方法具有重要的意义。在本课教学中,我努力做到了以下几点:

  一、复习铺垫,为新课做好准备

  本节课中,找准单位“1”,写出数量关系式是解分数应用题的关键。因此在新课之前,我出示了这样一组练习做铺垫:

  (背投出示)

  1、列式解答

  (1)20的1/5是多少?(2)6的3/4是多少?

  求一个数的几分之几是多少,用乘法来计算。

  2、找单位“1”,说关系式

  (1)、男生占总人数的2/3。

  (2)、红花占总数的5/6。

  (3)、一本书,读了3/4。

  (4)、一条路,还剩下1/4没有修。

  为本节课的新知识做好了准备。

  二、创设严谨的思维训练,提高学生的思维和分析能力。

  小学生思维处于无序思维向有序思维的过渡阶段。因此,教师要积极地引导和帮助学生过渡这个阶段,训练思维的条理性。在教学这节课时,我特别注重让学生分析表示数量间关系的句子,也就是关键句,在关键句中找出哪个量是单位“1”,哪一个是比较的量,然后分析分率的意义,根据题意画线段图,根据线段图列出等量关系,寻求已知量和未知量,根据关系进行解答。

  三、注重孩子的全体参与,让孩子在动手操作中理解题意。

  解答分数问题的关键是弄清楚题中的数量关系,这也是课堂教学的重难点。运用直观的线段图来表示题中的数量关系,有助于学生理解题意。在这节课上,我让每个孩子动手,在理解题意的基础上画出线段图,然后让学生观察、分析、比较,鼓励学生互相讨论,得出哪种线段图最完整,能够看图就能知道题的意思。这一环节使每一位学生都积极认真的参与到学习之中。

  这节课也有不尽人意的地方。因为这一段学习的都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是不那么理解。我想,学习了分数除法应用题,与除法进行对比练习后,学生可能才会有更深刻的理解。

分数乘法教学反思7

  教学就是一个摸索的过程,年轻人有朝气但缺经验,老教师有经验但缺热情。虽然教了几次六年级对于很多内容的教法却一直没有定型也不能定型。

  原来对于分数乘法只是从做法上进行教学师生都感觉很简单,一般第一单元测试基础差、思维差的同学也能考到90多分,所以为了节约时间,让学生不只是乘,而把乘法这个单元一带而过,和分数除法一起学习,在对比中让学生明白道理,选择做法。但综合到一起学习,学生刚开始也是错误百出,只能机械地告诉学生单位1已知用乘法,单位1未知用除法,加上学生约分出现约分不彻底,成了一锅浆糊慢慢理。不过,这样好像也能比进度慢的`老师成绩好一点,但对于基础特差的学生似乎有点残酷。

  我决定在分数乘法这一单元让学生彻底明白道理,深入每位学生心里,一步一个脚印地学习。于是在学新课之前,我先对五年级的公因数、公倍数问题进行复习,发现这个难点依然值得深入复习,学生对互质数等基本概念都忘了,特殊数的最大公因数更是错误百出。深入对约分环节打好基础,也为整个小学阶段的复习打下坚实的基础。

  然后让学生应用中多说道理,同桌互为老师讲一讲道理,避免学生理解表面化,真正理解了分数乘整数的意义。分数乘分数让学生折一折、涂一涂,操作中自然理解更深入,学习更有兴趣。虽然多耗点时间,但这样学习才能真正面向全体,基础更扎实,后续学习更高效而有兴趣。

  知其然更要知其所以然,说着容易,但体现在教学的每一步并不容易。

分数乘法教学反思8

  本节课呈现了世界文化遗产北京颐和园图片。图中包含的主要信息是:北京颐和园由昆明湖和万寿山组成,其中昆明湖占地219公顷,万寿山占地面积仅是颐和园的1/4。借助问题“颐和园的占地面积是多少公顷”引入对列方程解决稍复杂的分数问的学习。这节课主要解决整体与部分的关系。教学时,从游览世界文化遗产的`话题引入文字信息,激发学生学习的兴趣,然后引导学生根据数据信息提出与本节学习有关问题,展开学习活动。

  本节课是在简单分数应用题的基础上进行教学,学生已有了一定基础,因此首先设计三道找单位“1”的复习题,为学生学习新知识做好辅垫。因为学生有了学习简单分数应用题的经验,因此在理解题意之后我放手让学生画线段图分析、解答试做,做完后让学生在小组内交流自己的解题思路讨论,讨论完成请学生上台展示方法。在学习过程中学生充分参与了课堂学习,成为学习的主人,同时培养了学生的口头表达、分析和与人合作的能力。

  学生展示时是突出重点突破难点的一个重要环节,我围绕重点难点精心设计提问,并充分利用线段图引导学生理清题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

  虽然在教学设计中我作了充分的考虑,也重视引导学生主动探究与积极思考,但在教学中还是显露出了一些问题:反馈形式比较单调,缺乏激励性的语言和形式,学生明白但表述不清楚,个别学生表述单位“1”加几分之几,表示什么意思时,发现还很有点模糊。因此,我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。

分数乘法教学反思9

  小学数学《分数乘法》这节课是让学生理解分数乘整数的意义,掌握分数的计算法则。依据知识的迁移,我首先进行了必要的.铺垫,复习整数乘法的意义,利用知识之间的联系,使学生顺利掌握“分数乘以整数的意义与整数乘法意义相同”。同时,复习分数加法,为后续教学铺垫。

  在教学分数乘法在过程中约分时,书上的例题是:6×5/9,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性,因此,我将题目改得稍复杂些,变成“6×17/18”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。

分数乘法教学反思10

  分数乘法应用题涉及到了单位“1”的判断,而单位“1”的正确判断与较复杂的分数乘法应用题的解答息息相关。学生在接触到两种结构分数应用题,很容易把单位“1”搞混淆,出错也是经常的事,在突破这个难点的问题上,我采用的方法是统一两种结构的分数应用题,教会学生找单位“1”,利用画线图和列数量关系的手段去解决问题,取得了不错的效果。下面具体谈谈是如何突破难点,有效的将两种结构的分数应用题统一起来的.。

  首先,“求一个数的几分之几是多少”这种结构往往比较简单,从学生的练习来看,学生掌握比较好,班上有大部分学生都能在没有教师的指导下完成,但少部分同学面对应用题这种形式,具有胆怯心理,所以我从分数乘分数的意义入手,在新课的复习引入的环节让全班学生完成相应的文字题,学生容易入境,然后放开手让学生以小组形式展开对应用题的探究,并让完成较好的学生说说自己是怎样想的,全班共同交流,共同得出单位“1”,以及分数所表示的是“倍数关系”,并且结合线段图的方式,引导这个分数所对应的量,通过比、画、找的方式让学生自主发现这种类型的应用题和分数乘分数所表达的意义一样,另配合相应的练习,帮助学困生较好地掌握该类型。

  其次,在解决“比一个数多(少)几分之几”这种结构问题时,我选择的方法是通过判断句子“比一个数多(少)几分之几”中多或少了谁的几分之几?这个句子从语文的角度来看,其实它是一个省略句,省略的正是多或少了“一个数”的几分之几,这里所指的“一个数”其实就是前面所提到的“一个数”,如果在这样一个短句中出些两个“一个数”就会重复啰嗦,通过这样的讲解,学生很容易找到单位“1”,从而这种结构和第一种结构很好地结合在一起,再通过画线段及列数量关系的方法,分析对应量及所求量的关系,学生比较轻松的掌握此种类型,从反馈的结果来看,学生在判断单位“1”不容易混淆,这种讲解的方法的效果比较好。

分数乘法教学反思11

  在这一个月里的教学内容是分数乘法,重点是巩固和进化理解分数乘法的意义,探索分数乘法的计算法则。在这一个月的教学工作中,感触很深。

  一、充分利用学生已有的知识水平与生活经验,实现新知识的迁移。

  在教学分数和整数相乘时,根据学生的已有的知识基础,设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生通过联系旧知识去探究学习,例如:教学2/9×3,首先要让学生明确,要求3个2/9相加的和,也就是求2/9+2/9+2/9是多少,并联系同分母分数加法的`计算得出2+2+2/9,然后让学生分析分子部分3个2 连加就是2×3,并算出结果,在此基础上,引导学生观察计算过程,特别是2/9×3与3×2/9之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练3×2/9,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。

  二、把直观操作与抽象推理相结合,理解分数乘法的计算法则的推导过程。

  由于分数乘法的计算法则比较抽象,学生理解起来有一定的困难。教学时我尽量加强直观,变抽象为形象,多给学生创造对手操作的机会,激发学生学习的兴趣,使他们主动地参与到教学过程中来。在直观操作的基础上在推导出分数乘分数的计算方法,进而概括出分数乘法的法则。

  培养学生良好的计算习惯和认真的学习态度。学生掌握这部分内容并不困难,但要通过这部分内容的学习和练习,培养其认真审题、注意运算顺序、观察数字特点,选择简便方法等良好的计算习惯和严谨认真的学习态度,为他们以后的学习打好基础。

  三、还要重视学法指导,培养学生的内推力。

  在这一个月来,课堂上的内容都比较顺利的完成了,但从学生的反馈信息收获不是很成功,小部分的学困生对所学的还是没完全的消化好。

  总之,在今后上数学课时应充分调动学生的各种感官,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。

分数乘法教学反思12

  一、为什么分子相成、分母相乘。

  应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1 份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。

  二、如何从分数乘整数到分数乘分数。

  分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的`1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。

  三、给学生一个自主的机会。

  练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。

  比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。

分数乘法教学反思13

  探究环节是本节课的重点,包括“理解分数乘整数的意义”和“归纳分数乘整数的计算法则”两部分,其中后者是重中之重。 “理解分数乘整数的意义”时,巧妙运用“认知迁移规律”,引导学生在比较中自主发现分数乘法和整数乘法的相通之处;“归纳计算法则”时,留给学生自主探索的空间,使学生充分经历“尝试解答——初步得出结论——验证结论——归纳法则”的过程,不仅提高了学生自主学习的意识,而且使学生掌握了学习的方法。

  总之,给学生发现的机会,他们能自己做的我们不告诉他们。如

  1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。

  2、他们能自己计算分数乘整数的式题。

  3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。

  数学课中练习设计具有很强的.策略性,好的练习可以使“不同的学生在练习中得到不同的发展”。本节课的练习设计采用“题组”的形式,就是立足于尊重学生的差异,变“步伐一致”为“优者制胜”。计算速度快的同学可以有时间看书质疑,从而提高其发现问题、提出问题的能力。另外,在开放练习中,通过学生补充的条件和自编的应用题,可以把前后知识融会贯通,找到学习新知的生长点。

分数乘法教学反思14

  在本节课的教学中,我以折纸涂色活动为主线,给学生提供了大量的动手操作的时间和观察交流,思考的空间,鼓励学生独立思考,从不同的角度去探究问题。探索并掌握分数乘分数的计算方法,并能够正确计算,还要能运用分数乘分数的知识解决简单的实际问题。我还重视将操作过程、文字语言、图形语言和符号语言的结合,相辅相成,鼓励学生讨论如何折纸表示3/41/4及其结果,这样不仅解释了符号语言的意义,也直观形象地展示了3/41/4的计算方法,使学生在折纸过程中,充分体会到分数乘分数的意义,感受计算分数乘分数时为什么是分子乘分子,分母乘分母的道理。满足了学生多样化的学习需求。

  在分数乘法(二)中我结合教材和课程标准的需求,首先向孩子们提出并应用了数形结合的方法。例如在引入中:把一张长方形的纸对折一次,用斜线涂出它的' 1/2,然后对其再对折第二次,用红色涂出斜线部分的1/2,请你说一说红色部分占整张纸的几分之几。从学生的反馈来看,能够直观得从图中看出网格部分所占几分之几,但是学生很难列出乘法算式。(14的比较多)。说明学生不能够充分理解两次做为单位1的量。两次折纸中有两个单位1,比如第一次的1份占整个图形的1/2,此时的单位1是1,但是网格部分却占斜线部分的1/2,此时的单位1是1/2,也就是说网格部分对于整个长方形来说是1/4,这其间隐含着两个不同的单位1。在此说明,学生对于分数的意义掌握还不牢固。又例如在验证分数乘法法则的过程中,让学生通过折纸的方式来理解。

  其次,本课我力图让学生亲自经历学习过程。即让学生在动手操作探究算法举例验证交流评价法则统整等一系列活动中经历分数乘分数计算法则的形成过程。这里关注了让学生自己去做、去悟、去经历、去体验,去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。在教学的整体设计上是由特殊(分子位1分数相乘)去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出分数乘分数只要分子相乘,分母相乘的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法。但是对于折纸的验证方法,有个别学生还是很难理解,允许他们用小数的方法来验证,但这种方法只适用与能够化成有限小数的分数,因此在出现不能转化为有限小数的分数相乘时,这些学生就只能听同学发言,没有自己的思考过程了。所以,如何面对学生的差异,促使学生人人能在原有的基础上得到不同的发展,还是课堂教学中值得探索的一个问题。

  把握好教材是基础,处理好生成与预设是关键,这是我上完了这节课后最大的收获。

  不足之处:

  1、由于我对新课程教材的理解不够深刻,在学生涂一涂理解分数乘法算理时,出现了三种不同的图示方法,而我只认同自己头脑中预设的那种,这样显然是不够的,数学学习的方法是多样性的,学习结果的呈现也是多样性的,开放性的。

  2、教学中,过分依赖于课前的预设,丢失课堂中及时生成的教学资源,错过了挖掘课堂中学生的内因动态的生成,没有创造条件促使内因向提高数学素养的方向转化。

  在今后的教学中,应多学习教育理论知识,强化学科知识,深刻领会教材,用好教材,处理好教材,把握好生成与预设的关系,提高自己的课堂应变能力,不断提高自己的业务水平。这样才会使学生学会数学、热爱数学。

分数乘法教学反思15

  分数乘法简便计算是在学生学习了运用乘法运算定律使整、小数乘法计算简便和分数加、减、乘法计算的基础上进行教学的,通过教学使学生进一步理解整数乘法的运算定律不仅适用于小数、整数乘法,而且也适用于分数乘法,使计算简便。有助于提高计算效率,有利于实际应用。

  教学中,我设计以学生的自主学习为主,小组讨论为辅,大胆猜想为依据,实例验证为手段,集体归纳为结果的方式来进行学习。在这个过程中,学生完全是学习的主人,而我只是辅助性的导,包括练习的设计都充分体现了这一理念。

  原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。问题究竟出在哪里?我回顾了这节课,发现我的教学是努力体现了课改的精神,整节课运用了三步导学模式,让学生自主学习、展示交流。课堂力求能让学生完成的教师决不代替,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。由于教材没有例题,练习过于简单,学生往往不需要太多的`思考,新授的问题就迎刃而解,大大地缩小了学生思维的空间,如何发挥教学的作用呢?怎样来培养学生灵活的简便算能力?经过反思后,我认为在教学关于简便计算应从下面着手:

  不能单纯地依赖模仿和记忆。让学生动手实践,自主探索,合作交流加强数学与现实世界的联系是学数学的重要方式。在教学中我提问了多个学生,用语言描述加法定律,结果没有一个学生描述的清楚,倒是对用字母表示运算定律轻车熟路,问为什么这样做,都是用字母表示定律来回答。我想如果能让学生联系实际举例来说明,注重通过实际情境来分析算式,帮助学生从直观上来理解运算定律。效果既会加深对定律的理解,也能感受到数学计算与生活的紧密联系,提高解决问题能力。用两种方法解体现了学生思维方式的多样化,从不同角度思考问题、解决问题。出现算法的多样化后,我们应该利用这个契机,从而建立起简便运算模型:为后面的变式灵活、合理地进行简便运算打下扎实的基础。 借助数学知识的现实原型,可以调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。其次,是混合运算与简算混淆,乱用简便运算,另外是分配律用错的最多。

【分数乘法教学反思】相关文章:

《分数乘法》教学反思08-26

分数乘法教学反思09-12

分数的乘法教学反思05-25

分数乘法教学反思02-11

《分数乘法(三)》教学反思12-06

分数乘法教学反思【荐】04-02

分数乘法3教学反思12-31

分数乘法教学反思【推荐】06-14

分数的乘法教学反思15篇05-25