当前位置:9136范文网>教育范文>教学反思>《两位数乘两位数》的教学反思

《两位数乘两位数》的教学反思

时间:2024-05-24 11:53:32 教学反思 我要投稿

《两位数乘两位数》的教学反思

  作为一名到岗不久的老师,我们的工作之一就是课堂教学,对学到的教学技巧,我们可以记录在教学反思中,优秀的教学反思都具备一些什么特点呢?下面是小编为大家整理的《两位数乘两位数》的教学反思,希望能够帮助到大家。

《两位数乘两位数》的教学反思

《两位数乘两位数》的教学反思1

  本节课是在学生学习了笔算多位数乘一位数的基础上进行教学的。教学不进位的笔算乘法,重点是教学乘的顺序及各部分积的书写位置,重点帮助学生理解笔算的算理,突出各部分积的实际含义。在本节课教学中,我主要从以下几方面做起;

  一、让学生经历探索计算方法的过程,培养几何直观。

  让学生经历知识的`形成过程,是新课程倡导的重要改革理念之一。我在教学两位数乘两位数不进位的笔算中,首先让学生尝试用已有的知识解决新问题,并要求学生用点子图把自己的方法表示出来,让学生经历用图示表征解释算法的过程;然后在去全班交流展示多种解决问题的方法,并通过学生的汇报使学生明确如何划分点子图、算式表征了哪种计算方法,沟通图形表征、算式表征与计算方法之间的联系;最后,在理解竖式计算的算理时,让学生再次利用点子图,表示出竖式计算中每一步的结果,进而更好地理解其含义,掌握好算法。

  借助点子图,在加深学生对计算方法理解的同时,使学生逐步学会借助几何直观去解决问题,去表达和交流,有效促进学生的全面发展。

  二、处理好算法多样化与优化的关系。

  在学生探索14×12=?时,学生出现了多种算法:(1)14×10=14014×2=28140+28=168(2)14×2×6=168(3)14×4×3=168(4)12×7×2=168(5)12×10=12012×4=48120+48=168

  (6)14×9=12614×3=42126+42=168……在学生交流多种多种算法时,让学生在感受算法多样化的同时,应充分让学生通过对不同计算方法和点子图的比较、归纳和分类,体验方法的异同,掌握解题策略。教师发挥引导作用“这多种方法,都体现了相同的解题思路“先分后合”。师追问:先分后合的解题思路有什么优点呢?学生体会后说“这些方法都是先分后合,分开以后,数变小了,就会算了。分了以后就把新知识转化为旧知识来解答了。”这样在比较中,培养学生的分析能力和优化意识。

  三、注意培养良好的学习习惯。

  学生在计算时,容易产生一些错误。例如:只把相同数位上的数相乘,漏乘某一位;积的位置对错位;出现相加的错误等等。如果不及时纠正,就会产生不良的学习习惯。所以在学生计算中一定严格要求,书写工整,计算细心,认真审题的良好学习习惯。

《两位数乘两位数》的教学反思2

  本节课教学的是两位教乘两位数(不进位)的笔算,主要从以下两个方面入手:

  1.渗透估算。学生根据情境图列出算式24×12后,我追问:谁能估算一下大约一共有多少个?你是怎样估算的?通过这一追问让学生知道估算可以24和12看成接近它们的整十数。学生的估算方法多样,思维灵活,在具体的`题目中渗透估算教学,培养了学生的估算意识,同时又能为检验笔算结果是否合理服务。

  2.理解算理。列出算式24×12,重点还是让学生掌握两位数乘两位数的算法,本节课主要解决笔算过程中从哪一位乘起和竖式书写格式问题。在教学时,先让学生尝试选择合理的方法解决问题,数形结合,引出笔算的方法,过程自然、流畅。同时在理解算理时,让学生理解每一步表示的意义,感受知识之间的内在联系。但由于学生是初学两位数乘两位教的笔算,因此经常会在书写格式上出错,出现数位不对齐等问题。所以在教学时,还要多巡视学生的书写,及时发现问题,及时纠正。

《两位数乘两位数》的教学反思3

  《两位数乘两位数》这部分内容包括整十乘整十数的口算,两位数乘两位数的估算、笔算和解决问题等内容。孩子们已经学习了表内乘法、两位数乘一位数的口算,估算和笔算是本单元乘法学习的最直接的认知基础。上了整理与复习课,感受挺多的,有得有失,现作以下反思:

  一、情景激趣,贯穿课堂

  复习课不像新授课那样能让学生觉得有“新鲜感”。这节计算复习课的教学对象又是三年级的学生,他们年龄还小,好动、爱玩、好奇心强,如果用纯粹的先理后练的复习方法似乎不太符合学生的年龄特点。根据他们的认知规律,执教老师使用边理边练的复习方法,并设计了色彩鲜明的课件和有趣的情境进行教学。《新课标》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验、感受数学的力量。

  我们常说好的开始是成功的一半,其实我觉得课堂上也是如此。执教老师在复习课开始之前,就利用学生耳熟能详的动画片《小火车》中的动画形象小蓝和小绿、小红,并创设出学生感兴趣的“夺得大汽笛”的情境,学生的'注意力一下子被吸引住了,整节课的课堂氛围也能很好地被调动。接着我把这教学情境贯穿起来,以“解锁—翻越大山--亮灯”为主线展开分层练习,让学生在学习的过程中,有个情境的连续性,学生对这节课的兴趣更大了,整节课都在愉悦中度过。都说兴趣是最好的老师,我想这就是本节课收到较好效果的关键。

  二、及时小结,提高效率

  小结也是课堂重要的环节之一。俗话说“编筐编篓,重在收口”。数学课堂小结是整个教学的有机组成部分,对教学内容起到总结重点、画龙点睛和提炼升华的作用。帮助学生梳理、巩固知识,活跃思维、加深记忆。及时的课堂小结也体现教师的教学智慧,为学生指明学习的方向。

  在本节课中,老师注重让学生小结口算、估算和笔算的方法。在口算练习后,通过让学生小组讨论思考“因数的末尾一共有几个0,积的末尾也一定只有这几个0?两位数乘两位的积是几位数?”这两个问题,有效提高了学生口算的准确性。在练习笔算后,老师又让学生说说在笔算乘法中要注意哪些问题,这样能让学生在笔算中减少了各种错误。在解决问题的练习后,及时小结各种算法各有所长,并没有优劣之分,让学生懂得在解决不同的实际问题时,就要灵活选择最合适的算法。而在课的最后,让学生自我总结反思,让学生看到自己的收获与不足,提高了复习的效率。

  三、指导方法,提高能力

  学生是课堂真正的主人,在复习课上也不例外。笛卡尔指出:“最有价值的知识是方法的知识”。在复习过程中,要充分发挥学生的自主性,让学生积极、主动参与复习的全过程,激发学习兴趣。特别是要让学生参与归纳、整理的过程,不要用教师的归纳代替学生的整理。对于三年级的学生来说,独立归纳整理知识还是比较困难的,因此,在这节课中,执教老师“手把手”地指引学生打开书回顾学习过的知识点,弄清本单元分了几小节,每小节几个例题,在每个例题中学习了什么,一边看书一边填写知识结构图。使本单元知识在学生脑中逐步形成网络。并用直观生动的课件和网络介绍了用大括号表示的知识结构图、树形知识结构图等多种整理知识的方式,学生觉得整理知识是一件新鲜有趣的事,并初步学习了整理复习知识的方法,提高了自学能力。

  回顾整节课也存在很多不足,感觉有很多细节处理不到位。例如由于时间的关系,某些题目只能点到为止,如果能深入进去,学生的思维更开拓。又如课堂中未能让每一个孩子充分展示,还是“话太多”等。我想,数学复习课就像一片需要开垦的地,只要善于思考、勤于实践,复习课会越来越精彩,越来越充满活力。

《两位数乘两位数》的教学反思4

  两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用“旧知”解决“新知”的学习方法及善于思考的学习品质,养成认真计算的.学习习惯,其中教学重难点仍是理解乘数是两位数笔算乘法的算理。

  对整堂课的教学顺序初步打算是,创设一个具体的情境激发学生学习的兴趣,围绕要解决的中心问题展开自主探索,在教学中教师心引领者的角色带领学生理清:1、掌握乘的顺序。2、理解用第二个因数十位上的数乘第一个因数得多少个“十”,乘得的数的末位要和因数的十位对齐。在实际教学时,估计有相当一部分学生能算出结果是多少,所以本课基本思路是从“认知——冲突”到“新知——尝试”经过“交流——理解”达到“巩固——掌握”,同时也提倡算法多样化。

  实际教学中,在“组织全班讨论、交流各类方法,提出自己的疑问一起解决”这一环节上,教师处理上有不当之处。学生出现多种计算方法,有拆因数法,有正确的坚式计算,也有错误的坚式计算,组织讨论时教师问了这样一个问题:“观察黑板上同学的算式,你有什么意见或不同看法可以提出来。”于是学生就从错误的坚式入手,说明它的错误点,导致再去观察其他坚式时出现了重复现象,破坏了层次感。其实在这一环节的处理上,教师应该充分发挥引导者的作用,带领学生从横式即拆因数法出发逐一去分析,将错误的方法放在最后处理,这样层次感更强些,也符合学生认知的特点。

《两位数乘两位数》的教学反思5

  两位数乘两位数不进位笔算乘法是在学习了笔算两、三位数位数乘一位数和含整十数的两位数乘法的基础上进行教学的, 本节课在新知的探索过程中,为了突破重点和难点,我采用了情境教学法和自主探究法分三个层次进行。

  第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,都仅仅围绕乘法的意义来展开。

  第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点。让学生尝试用竖式计算23×13=,师巡视辅导,然后指名板演不同计算方法,让学生根据题意观察、比较、不同算法,辨析、交流分辨对错。因为有了前面的铺垫,学生掌握起来容易多了,能够理解1个十乘3得到3个十,故3应照齐十位,其它依此类推。效果良好。

  第三个层次,联系实际,强化练习

  这是一堂计算课,学生要从不同的`角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。由于练习是一种有目的、有步骤、有指导的教学活动。所以教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题,计算是枯燥的,但也是有用的,因此引导学生能应用知识解决生活里相关的实际问题,既练习了所学知识,又体会数学的作用,逐步树立应用数学的意识,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法。

  在教学的过程中我也发现了自己的不足,如课堂提问的策略问题,面对学生的突发问题,有时不知道怎样去引导。出现了一些重复教学的情况 。还可以对重难点内容再进行深入巩固。在教学时,我只是简单的让几个学生进行了乘法竖式的复述就完了,没有顾及大部分学生。我可以再让几个不同层次的学生进行复述,练习时,也可以让学生自己说过程,出现错题时,也可以让学生自己说原因和正确的过程,但是我过于仓促的结束了教学,可能导致部分基础差的学生对本节课所学知识的掌握不牢固。还有些孩子在计算的过程中,容易一部分按乘法计算,另一部分按加法计算;也有一些孩子把个位与第一个因数相乘的积,十位与第一个因数相乘的积,应该是相加,而写为相乘。计算不熟练。在以后的学习中要强化训练。

《两位数乘两位数》的教学反思6

  两位数乘两位数的笔算,是在学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十),并且掌握了多位数乘一位数的计算方法的基础上进行教学的。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。

  设计原则之一:计算与应用结合,体验计算是有用。

  因此整堂课的教学流程是创设情境提出问题探索尝试寻找方法巩固方法学以致用。让学生在解决实际问题中探讨计算方法,使学生深刻理解为什么要计算,切实体会计算的意义和作用。

  设计原则之二:主动探索计算方法,并进行优化,渗透化归的数学思想。

  解决买24本树需要多少元时,学生寻找了很多方法。有的用了拆数,有的用了连乘,有的用了课外学习的竖式。到底哪些方法是通用的'?哪些方法是有局限性的?教师应当肯定学生正确的想法,更应当引导学生进行合理的优化,寻找解决问题的一般方法。

  设计原则之三:结合具体情境理解并掌握两位数乘两位数的计算方法。

  学生掌握两位数乘两位数笔算方法的关键是:

  ①掌握乘的顺序;

  ②理解用第二个因数十位上的数乘第一个因数得多少个“十”,乘得的数的末位要和因数的十位对齐。

  结合具体情境,既能沟通横式与竖式间的联系,又能有助于学生理解乘的顺序(每一步的由来),对位的问题。脱离具体情境说说怎么计算,从具体到抽象,帮助学生更好的掌握计算方法。

《两位数乘两位数》的教学反思7

  本节课是三年级数学下册第四单元第3课时的内容,学生在掌握了两位数乘整十数和两位数乘一位数的口算的基础上进行学习的。

  优点:

  1、复习铺垫起到了承上启下的作用。

  本节课复习了两位数乘一位数和两位数乘整十数的口算乘法,为两位数乘两位数的算理的理解做好铺垫,两位数乘两位数可以转化为两位数乘一位数和两位数乘整十数。让学生在已有的生活经验上去学习,理解更容易接受。

  2、小组合作效果好,学生对算理理解到位。

  在小组合作探究的过程中,有些学生会想到把12看成10和2的和,先用14×10=140(本),再用14×2=28(本),然后把两次乘得的结果相加,140+28=168(本)或14×12=168(本)。有些学生可能由两位数乘一位数的竖式乘法,想到两位数乘两位数也可以用笔算。

  不足之处:

  1、列竖式计算中,有易错点没有突破。

  在列竖式计算中,出现了个位和个位相乘,十位和十位乘的`现象,说明对竖式的算理理解不够透彻,对计算方法的认识还存在误区。对于老师的提问与十位相乘的积的末位数字要与十位对齐,并且末尾的0不用写的原因说不清楚,表达不出来。也说明对于本节课的难点没有突破。

  2、时间把握前松后紧,导致后面的练习没有完成。

  由于突发状况的发生,错误题的纠正,和学生说算理不清楚再加以练习等等,使得前面时间用的较多,导致后面练习没有跟上,学生对竖式计算没有形成熟练的技巧。

《两位数乘两位数》的教学反思8

  今天继续用钉钉直播讲授数学课,本节课我讲的三年级下册第四单元的《两位数乘两位数的笔算》一课,它是在学生学习了多位数乘一位数的基础上进行教学的,也是整数乘法学习的重要阶段,需要让孩子对整数乘法的算理和算法进行更深层次的认识。

  课上,我通过复习多位数乘一位数,让学生说说笔算方法,唤起学生的已有知识,把新旧知识的衔接点找准,为学生能更好地学习新知做铺垫。接着从王老师买书的情境引出算式14×12,从而出示本节课的课题:两位数乘两位数。

  在探究两位数乘两位数的笔算方法时,我让学生通过点子图的形式,明确可以把其中第二个乘数分成(3×4)或(10+2),首先知道了计算结果是168;接着一起探究两位数乘两位数的笔算方法:我让学生先根据独立尝试解决列竖式计算,学生在尝试解题的过程中难免会出现错误;接着我一步一步出示正确的`竖式书写方式,并通过点子图让学生明白每一步的意义时,特别强调14×2表示2套书的本数;14×10表示10套书的本数;28+140=168表示12套书的本数。同时明确了竖式书写要对齐数位,十位与第一个乘数相乘的积个位的“0”可以省略的道理。学生结合现实的情境,理解了两位数乘两位数的算理,使抽象的算理具体化,更便于理解和接受。

  接着我通过与多位数乘一位数的竖式计算的对比,让学生发现相同之处和不同的地方,从而总结出两位数乘两位数(不进位)的笔算方法。在巩固拓展环节,我先从笔算方法的掌握先着手,让学生通过计算、展示做一做的题目,让大家明确竖式中的每一步得数是怎么来的,进一步理解算理,掌握计算方法。最后让学生去所学的知识去判断纠错,解决生活中的实际问题,把所学的知识应用于生活,提高学生解决问题的能力。

  整节课我把计算教学与解决实际问题相结合,使课堂内容充满了情趣,有了色彩,既解决了计算问题,又提高了解决实际问题的能力,一举两得。但本节课也有一些不足之处:由于网络授课的原因,学生的列竖式计算的情况没有全员关注,上课时间只有30分钟,导致解决问题的练习比较草率。

《两位数乘两位数》的教学反思9

  教学目标:

  1、理解乘法的意义和两位数乘两位数的算理,让学生经历发现两位数乘两位数的计算方法的全过程,体验计算方法的多样化;

  2、感受“借助旧知识,解决新问题”的策略意识。

  3、通过应用,初步体验两位数乘两位数在生活、数学应用中的广泛性,拉近算式与生活的联系,并体验探究、应用过程中的成功感。

  教学重点:理解乘法的意义和两位数乘两位数的算理,掌握两位数乘两位数的笔算方法,能正确地进行计算。

  教学难点:理解用一个数的十位上的数去乘另一个,得数的末尾与十位对齐的道理。

  教学过程预设:

  一 、创设情境,提出问题

  听说小朋友这几天在学乘法,先来考考你们

  1、先后出示12×3 12×30

  师:12×3多少?是几位数乘几位数(两位数乘一位数)你知道这个算式的

  乘法意义吗?(乘法意义)

  师:那12×30呢?是几位数乘几位数?(整十数乘两位数)它的乘法意义?

  2、师:老师对今天这节课小朋友的学习更有信心了。小朋友,你们有吗?好,现在上课。

  3、师:李老师来自镇小,在算我们学校总人数的时候遇到了这样一个问题

  临城小学平均每班有31人,那全校12个班有几人?

  (1)读题

  (2)怎样列式?31×12

  (3)这是几位数乘几位数?(两位数乘两位数)它的乘法意义你知道吗?那么谁能说说,31×12它的结果大约是多少?你是怎么估计的

  (4)我知道了镇小大概的人数,那到底准确的有多少人呢?大家还没告诉老师呀,要计算这道题,我们以前学过吗?遇到新问题了怎么办?能不能把它变成我们已经学过的知识?

  二、探索尝试,寻找方法

  1、自己试着把这题变成我们学过的旧知识,在自己的练习本上试试。

  2、师:你不仅要会算,还要把道理说清楚,有了一种方法,还有没有第二种方法,第三种方法?(在此期间请学生到黑板板书不同的方法)

  3、同桌交流整理。

  师:怎样才能使老师听明白?先同桌之间互相当小老师试试,看能不能使对方听懂。开始交流。

  3、全班汇报,汇总解答策略。

  师:我发现刚才在讨论的时候大家学习习惯特别好,学习效果一定很好。谁想出了一种方法?有两种的吗?还有没有更多的?(把学生的方法写到黑板上来,并请学生来介绍)这是谁写的,请你来说说?

  可能会出现:

  第一种方法:31×10=310 31×2=62 310+62=372

  师:为什么这么列,这是什么意思?(31×12没学过,但我们可以转化成我们学过的知识,31×12表示12个31相加,可以把它看成10个31与2个31相加)你们明白了?

  或出现12×30=360 12×1=12 360+12=372

  师:这两题方法有什么共同的地方(都把一个因数拆成两数之和,再与另一个因数相乘)我们可以把它看成是同一种方法)

  师:为什么要拆呀?

  师:看来大家很有自己的`想法,想到把新知识转化成旧知识来解决。

  第二种方法:31×4×3 31×2×6

  那这又是什么意思呢(把一个因数拆成两个因数的积)老师发现我们班小朋友真是了不得,你们知道吗你们刚才用的方法是我们四年级才要学的。

  [1][2][3]下一页

  第三种方法:

  1、他是用什么方法做的?用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)

  若学生没出现竖式的形式

  师:我们以前学习两位数乘一位数的时候可以用竖式做,那两位数乘两位数可以吗?自己试着做做看。用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)

  2、 62是怎么来的?(2个31)也就是用第二个因数的个位去乘第一个因数

  3、310是怎么来的?(10个31)那3728呢?(板书:与第一种方法用线联系

  起来)

  31

  × 12

  ———

  62

  310

  372

  4、若学生还有其他不同的算式,

  31

  × 2

  ———

  62

  31

  × 10

  310

  62

  + 310

  372

  (1) 你为什么这么做?看来大家很有自己的想法。

  (2)看着这三个板书,你想不想说什么?是不是觉得有点繁?能不能再创造出一个算式,把三个算式的意思也能用一个算式也能明白?再试试。我已经发现很多小朋友智慧的火花了。

  4、请他板演后,问:大家能看明白是什么意思吗?每一步表示什么意思?同桌互相说一说(提醒:分几步做?)

  5、看着板书现在你想说什么?(第一种方法与笔算方法的思路是一样的,一个横式表达,一个竖式表达。竖式的形式以前我们也见过,我想今天学习了两位数乘两位数,竖式这种形式应该重点掌握。

  6、现在我们能知道镇小有多少学生吗?(板书完整横式)观察竖式,填一填2个班有( )人 10个班有( )人 12个班有( )人

  23

  × 13

  ———

  69

  230

  299

  7、尝试用竖式练习23×13。(学生再次尝试计算)有困难的同学可以模仿上面一题也可以求助于你的同桌

  (1)谁愿意把你的解法展示给大家看(实物投影)并边介绍

  你的想法

  (2)你能看明白这个算式的每一步是怎么来的,表示什么意

  思吗?同桌互相说一说

  有什么地方不懂的?想问大家的。(实物投影)

  8、揭示课题

  师:这节课我们在学习什么?(两位数乘两位数的笔算)碰到这个新问题我们是怎样来学习的?(把新问题转化成我们学过的旧知识)今天我们用到了哪些旧知识?现在你能说说应该怎样笔算两位数乘两位数吗?

  师:是呀,我们学习数学往往都是把新问题转化为旧知识来进行的,今天的新知识,对于后面要学的知识来说又变成了旧知识,因此我们必须今天的知识学好,学扎实。

  23

  × 13

  ———

  69

  41

  × 21 230

  299

  9、理解个位“0”不写的意思

  31

  × 12

  ———

  62

  310

  372

  1)观察这三个竖式,跟以前两位数乘一位数的笔算有什么地方不同?为什么会出现“两层楼”的情况?(因为乘了两次,第一次是第二个因数的个位去乘第一个因数,第二次是第二个因数的十位去乘第一个因数)

  (2)除了要乘两次外,还有什么共同的地方吗?(第二次乘得的积的末尾都是“0”)为什么末尾都有“0”?那这个“0”不写可以吗?如果横式中不写可以吗?为什么竖式中可以而横式中却不可以?(竖式中有数位)“0”省略会不会影响计算结果?但要注意什么?因此我们通常把个位的 “0”省略不写。

  (3)其实个位不写“0”还有一个更大的作用,(观察板书)只要算第二个因数十位的时候,跟十位对齐就行了,这样两位数乘整十数就变成了两位数乘一位数。但有一点算得的积必须与哪位对齐?(十位)

  (4)省略“0”以后要注意什么?

  三、巩固方法,推广应用

  1、现在我们用这种形式笔算完成34×12 41×21

  (1)做之前有什么要提醒自己和大家的吗?

  (2)(实物投影)学生笔算并汇报

  (3)现在同桌互相说说两位数乘两位数的笔算应该怎么算?

  2、师:在我们生活中用没有用到过“两位数乘两位数”的例子?(一学生举例可请其他学生笔算完成)

  3、师:老师也来举个例子并笔算。出示:

  一套12本,每本24元。一共要付多少元?

  4、帮老师解决一个问题

  出示:

  ⑴61个小朋友去看电影,买票一共需要多少钱? (学生认为还少了每张票的价钱)

  师:电影院售票窗口有这样一个告示 :成人票每张50元 儿童票每张24元

  ⑵学生笔算

  怎样列式?为什么要与24相乘而不是50?

  ⑶多媒体对照

  61

  × 24

  ———

  244

  122

  1464

  ⑷ 1张票要( )元 60张票要( )元 61张票要( )元

  5、 11×11= 12×11= 13×11=

  14×11= 15×11= 16×11=

  师:要掌握两位数乘两位数的笔算,必须进行大量练习。现在我报题,你们笔算。

  (教师随时报得数)我已经好了,你们呢?

  师:很奇怪是吧,是不是老师把这些得数全背出来了?其实这里就有数学秘密在,有兴趣的话下课可以去找找

  机动:出示图片《脑筋急转弯》每本16元 《小博士观察手册》每本24元

  三(2)班小朋友准备700元钱,想每人买一本相同的书,应该买哪种书?

  四、课堂小结

  师:今天这节数学课你有什么收获?你是怎样学习的?

  师:今天我很高兴,感觉真好!这种感觉是大家给我的,所以我要特别谢谢你们,以后有机会咱们再在一起上课,好吗?

  反思:

  首先,我想谈谈对教材的理解。这部分的学习内容是在学习了笔算多位数乘一位数的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。

  本节课在新知的探索过程中,为了突破重点和难点,分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,包括两位数乘两位数笔算的过程都仅仅围绕乘法的意义来展开;第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点,主要是能解决这几个问题,第二个部分积的末尾“0”能不能省?会不会影响计算结果?省“0”后要注意什么?

  由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的练习意义,确保一步一个脚印,步步到位。只有这样才能真正实现练习的优化。因此在探索检验过程中我一共安排了4道题:31×12 23×13 41×21 34×12 前两题主要是为理解算理服务的,后两题是为了巩固部分积的对位问题。计算是枯燥的,但也是有用的,引导学生能应用知识解决生活里相关的实际问题,体会数学的作用,逐步树立应用数学的意识,从而从“有用性”的外在角度刺激学生的主观能动性,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法,使今后学生面对没出现过的题目、类型或其他生活中的问题,不再惊慌不已、束手无措也是我本节课要传达给学生的:原来新问题也不可怕,也只不过是旧知识的重新建构。

  在教学的过程中我也发现了自己的许多不足,特别是作为一名教师课堂智慧的缺少,如课堂提问的策略问题,面对学生的突发问题,不知道怎样去引导。在今天部分积“0”问题的处理上就花费了大量时间,并且出现了很多重复教学的情况。我想了有了失败,才会去找原因,才会去思索,才会不断去实践,这样在实践反思中不段磨练自己,锻炼自己。

《两位数乘两位数》的教学反思10

  《两位数乘两位数是义务教育课程标准实验教科书第七册80~81页的内容。

  教学的重点是使学生掌握两位数乘两位数的笔算方法,理解第二个因数十位上的数乘第二个因数得多少个“十”,并能正确计算两位数乘两位数。

  教学的难点是解决乘的顺序和第二部分积的书写位置问题。

  片段一

  师:文具店新购进一批圆珠笔,一盒是24支.请每个同学都猜一猜,这样的圆珠笔12盒大概有多少支?并说说你是怎样猜的?

  (学生猜测的积极性很高,但是五花八门,从八十左右到四百多不等.)

  师:看来大家猜想的结果很不一致,那么用什么办法可以判断哪种结果最准确呢?

  (有几个学生在下面嘀咕,算算不就知道了.)

  师:(老师马上接过话头)这几位同学说的很好,算算就知道了.下面请每位同学把自己猜测的结果写在纸上,然后独立地、用尽可能多的方法算算12盒这样的圆珠笔到底有多少支?看看自己猜的是否准确。

  (老师布置任务后,很多学生依然带着期待的眼光看着老师。当老师问,你们为什么不动手计算时,听到的回答是“两位数乘两位数还没有学呢?”)

  师:对,我们以前是没学,不过老师相信你们一定会想出许多方法。

  (在老师的`鼓励下,全班学生都开始了算法的思考,教师则分组进行指导。)

  (学生经过15分钟的独立思考后,教师回到讲台。)

  师:老师刚才发现,许多同学已经有了不同的研究成果,如果相互交流一下就可以学到不同的方法。在同学们相互交流之前,先整理一下自己的研究成果,想想你准备讲哪几点?说哪几句话?

  (准备20分钟后,开始小组内交流,然后请代表报告本组的研究成果,进行小组之间的交流。)

  通过交流,全班一共发现了近十种解法:

  1)24+24+……+24=288(12个24相加)

  2)12+12+……+12=288(24个12相加)

  3)24×2×6=288

  4)12×3×8=288

  5)24×3×4=288

  6)24×10+24×2=288

  7)竖式计算

  8)24×20-24×8=288

  片段二

  师:同学们已经探索出十几种算法,下面我们比较一下这些方法的优缺点。

  师生交流后,得出以下几种结论:

  1、用加法计算,容易理解,但计算麻烦,容易出错。

  2、把其中一个两位数转化成两个一位数的积,具有局限性,不通用。(如:24×13等)

  3、把“两位数乘两位数”转化成两个积的和(如:24×10+24×2=288),具有一般性,但书写不简单。

  二、归纳法则。

  在比较各种算法特点的基础上,师生共同研究两位数乘两位数的笔算算法,归纳法出笔算法则。

  三、巩固练习。(略)

  [案例反思]

  如何搭建“脚手架”?

  所谓“脚手架”是指学生在学习新知识之前所必备的相关认知经验,是学生汲取新知识的基础。由于学生已有的认知经验会直接影响新知识的建构。因此教学中一直很注重“脚手架”的搭建。

  在传统的教学中,“脚手架”往往是以“复习铺垫”的形式存在,搭建“脚手架“的任务也主要由教师承担。例如,在两位数乘两位数的教学中,多数教师都是先让学生做一些类似24×6、24×10的两位数乘一位数或整十数的题目进行复习铺垫,然后再引出两位数乘两位数的乘法算式。教师设计的这种“复习铺垫”可能会强化了新旧知识之间的联系,使教学过程比较顺利。但同时也人为地降低了学习的难度,降低了学习的挑战性。久而久之,学生便于工作只会习惯性地沿着教师指定的思路走,失去了主动探究的欲望,限制了创新思维的发展。

  我在教学中,则把搭建“脚手架”的机会还给了学生。在开门见山的提出问题以后,先让学生猜结果、说理由,然后鼓励学生用计算的方法来验证自己的猜想。

  首先,搭建“脚手架”要引导学生自主提取信息。

  随着信息时代的到来,社会越来越需要能处理信息的人。“让学生在自身原有的知识体系中提取对对解决当前问题有用的信息,是一种很重要的能力。”教师不应当是有用信息的提供者,而应当是学生主动提取有用信息的促进者。在“两位数乘两位数”的教学中,我没有进行复习铺垫,而是直接提出问题。当学生提出“两位数乘两位数还没有学”的问题时,又及时地对学生进行鼓励:“对,我们以前是没学,不过老师相信你们一定会想出许多方法。”面对全新的、富有挑战性的问题情境和教师真诚的鼓励,学生必定会使出浑身解数,寻求问题的答案,必定会激活学生认知结构中的有用信息,从而提高了学生根据目标需要检索和提取有用信息的能力,同时也在为学生的发展奠基.

  其次,搭建“脚手架”要蕴含数学思想方法。

  “如果知识背后没有方法,知识只能是一种沉重的负担;如果方法背后没有思想,方法只不过是一种笨拙的工具”。(钱阳辉)自新课程提出“三维目标”以来,数学教学扭转了对“知识目标”的单一追求,增加了数学教学中思想方法的含量。

  如果说传统教学过于注重了“知识技能脚手架”的搭建,我则更加倾向于引导学生搭建“方法策略的脚手架”。学生从“五花八门”的猜想,到“灵活多样”的验证方法,从对验证方法的优化,到归纳出笔算法则。学生收获最多的不是知识,而是研究问题的方法,是在学习过程中“再创造”的体验。在传授知识的同时,进一步引导学生领会数学方法、感悟数学思想,从而使学生学会数学的思维。

《两位数乘两位数》的教学反思11

  本节课是课本65页例题2进位的笔算乘法,重点讲解19乘19的竖式,让学生掌握两位数乘两位数进位的笔算乘法的方法,本节课是在学生学习了不进位乘法的基础上进行教学的,所以我先出示几个问题:

  (1)、这算式第一步算什么?是怎样算的'?个位满十怎么办?十位呢?

  (2)、第二步算什么?是怎样算的?

  (3)、第三步呢?让学生带着这几个问题独立尝试计算,指名板演并给大家解释他的计算过程,其他四人小组也交流算法并全班汇报。

  这节课的重点是理解进位笔算的算理,在学生展示并讲解方法之后,我都一一作出了评价,最后由老师再演算一次,并一边算,一边讲解算理(先用第二个因数个位上的9去乘19的每一位,积的末位要和个位对齐,表示9个别19是不是171,个位满八十向十位进8,再用第二个因数十位上的1去乘19,最后把两个积相加),然后再让全班齐说算理。接着出一些错题让学生判断并改正,并要他们知道错在哪?笔算进位的两位数乘法要注意什么?再通过书本65页的“做一做”来加深进位的两位数乘法计算方法,并让学生同桌间说说笔算的过程,同桌说说,指名说,以此方法突破教学重点。

《两位数乘两位数》的教学反思12

  两位数乘两位数不进位笔算乘法是在学习了笔算两、三位数位数乘一位数和含整十数的两位数乘法的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理;然后进位和连续进位。两位数乘两位数的笔算是本单元的教学重点。十位部分积的对位问题,是本节课的'一个难点。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。

  本节课在新知的探索过程中,为了突破重点和难点,分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,都仅仅围绕乘法的意义来展开。20根灯柱,每根灯柱上有12盏灯,一共有多少盏灯?学生很快分析并解答了出来:20个12是多少?即24个十。

  第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点。在前面口算的基础上,我又提出如果是23根灯柱呢?学生很快说出求23个十是多少?有的说前面的20个12再加3个12,师顺势引导先用竖式计算20×12=,再用竖式计算一下3×12=,学生算出后,再让学生尝试用竖式计算23×12=,师巡视辅导,然后指名板演不同计算方法,让学生根据题意观察、比较、不同算法,辨析、交流分辨对错。因为有了前面的铺垫,学生掌握起来容易多了,能够理解1个十乘3得到3个十,故3应照齐十位,其它依此类推。效果良好。

  第三个层次,联系实际,强化练习

  这是一堂计算课,学生要从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。由于练习是一种有目的、有步骤、有指导的教学活动。所以教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题,计算是枯燥的,但也是有用的,因此引导学生能应用知识解决生活里相关的实际问题,既练习了所学知识,又体会数学的作用,逐步树立应用数学的意识,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法。

  在教学的过程中我也发现了自己的不足,如课堂提问的策略问题,面对学生的突发问题,有时不知道怎样去引导。出现了一些重复教学的情况,如:对学生估计过低,学生已经表达清楚地内容,总要自己再重述一遍。

  还有些孩子在计算的过程中,容易一部分按乘法计算,另一部分按加法计算;也有一些孩子把个位与第一个因数相乘的积,十位与第一个因数相乘的积,应该是相加,而写为相乘。计算不熟练。在以后的学习中要强化训练。

《两位数乘两位数》的教学反思13

  本节课的教学重点是让学生掌握两位数乘两位数进位乘法的计算方法。在笔算前先让学生估一估是培养学生估算意识的重要手段,估算能帮助学生检查笔算的.结果是否合理。我在学生笔算之前,总是让学生先估一估,学生的乘法估算能力提高的同时,也巩固了乘法口算。进位乘法的算理和不进位乘法的相同,学生通过知识迁移,能够独立探究完成。在计算时,学生应注意对进位的处理,尤其是在第二步计算时,总有需要进位的,有的学生口算有困难,那么他就可能在进位写法上还存在不足,有的学生在写竖式时找不到合适的位置,所以我就引导学生将进位方法记录在竖式旁边。即使这样,在检查计算结果时,我发现错误率还是很高,其原因除了有些学生对算理的理解不透彻外很多学生都是在口算时出现了失误。所以在起步阶段的笔算过程中,我要求学生说出每一步计算过程,每个数字都是怎么得来的?在说的过程中改正书写和计算中因为马虎而出现的错误,培养良好的计算习惯。

《两位数乘两位数》的教学反思14

  从数学知识、方法的角度看,“两位数乘两位数”这一教学内容应该再学生已经学习了两位数乘一位数和两位数乘整十数的基础上进行的教学。从学生思维特点的角度看,三年级学生仍以具体形象思维为主,但他们的逻辑思维能力有了初步的发展,这一年级的教学应多组织学生开展探索性的思维活动,注重知识的发现和探索的过程,使学生从中获得数学学习的积极性,感受数学的力量,培养学生解决数学问题的能力。

  1、复习引入,明确学习任务

  教师先出示了一组口算题,让学生进行会议旧知,然后在进行改编题目,明确本节课的主要解决问题,同时与旧知联系起来,使新知识与旧知能沟通好,从而为下面的学习任务做好铺垫。

  2、独立思考尝试解决问题

  让学生通过独立思考尝试解决问题,运用的多种方法解决问题,经历了解决两位数乘两位数这一问题的`过程,体验解决数学问题的喜悦或失败的情感。

  3、梳理思路,小组交流,取长补短

  学生通过整理已有的解决问题的方法和思路,培养他们的归纳能力,通过观察他人的解题思路,培养他们的分析能力,为数学的交流做准备,并通过交流书学生学会倾听,学会换位思考。

  4、整理成果,全班交流,教师归纳

  让学生一小组为单位,向全班同学展示本小组的探究成果。能培养学生的归纳整理能力,和合作的意识。,明白了要解决两位数呈两位数只要通过正确的分拆就可以把它转化为以前的知识,从而可以解决问题。然后在通过教师的层层引导,明确只有在正确的分拆方法基础上,还要根据数字的特点进行合理的分拆,才能有助于计算,才能使计算更方便、更灵活。

  5、随堂小考,巩固新知

  通过随堂小考的形式,让学生自己检测学习情况,明确下课后的任务。根据自己的成绩来选择相应的练习。

  6、回顾过程,总结学习方法

  师生共同回顾,通过这一节课的学习我们知道了:解决两位数乘两位数的问题可以有很多种方法,但我们要根据题目的特点合理的分拆,选择一个能有助于解决问题的方法。

《两位数乘两位数》的教学反思15

  两位数的乘法学习已经告一段落,根据进度今天是本单元的最后一节课了。课上,我引导同学们分别回顾了口算、估算、笔算的计算方法,并即时进行了练习,以及解决问题中计算的运用。通过复习,大部分同学已经对本单元的知识网络结构有所了解,对乘法的计算方法掌握得也不错。

  衡量片刻,我认为明天的课不能跨单元,因为两个班中都有少数的'学困生掌握还不够牢固,我们不能对此视而不见。整体上,孩子们的计算准确度在提高,但还不算理想,尚需快节奏的计算巩固,督促他们在计算中进一步熟知算理与计算过程,同时找到自己错误所在,提升他们的计算能力,同时让那些学习困难的同学能上一个台阶,缩小他们的差异。

  周末作业中,孩子们一些易错题也存在一些质疑,部分学生分析问题的能力也有待培养,所以,放慢脚步等待孩子是我现在必须要做的。针对上周与本节课的复习,制定以下实施计划:

  1、加强基础知识的巩固,对口算、估算、笔算进行基础练习,同时找出孩子们的易错点进行专项讲解引导;

  2、下节课对本单元作业中出现错误频率较高的题目进行讲解,加深孩子们的印象,同时让更多的孩子能理解题意;

  3、将解决问题的运用始终贯穿于计算的教学之中,不让计算孤立导致学生感到枯燥。

【《两位数乘两位数》的教学反思】相关文章:

《两位数乘两位数》教学反思10-10

《两位数乘两位数》教学反思范文05-23

《两位数乘两位数的笔算》数学教学反思12-10

《两位数乘两位数的笔算乘法》数学教学反思03-12

整十数乘两位数的教学反思10-25

两位数乘两位数教案08-27

三年级《两位数乘两位数》教学反思11-24

两位数加两位数的教学反思12-21

两位数加减两位数的教学反思01-18