《梯形面积》教学反思
身为一位到岗不久的教师,我们的任务之一就是教学,对学到的教学新方法,我们可以记录在教学反思中,我们该怎么去写教学反思呢?以下是小编帮大家整理的《梯形面积》教学反思,希望对大家有所帮助。
《梯形面积》教学反思1
教学过程:
多媒体出示梯形,我让学生说说:对于梯形,你们已经知道了什么?学生自由交流,尽情回想着前一天所学的知识,显然他们对于梯形有了较清晰的认识。
接着,我请学生拿出课前准备好的各种梯形,要求先独立思考再动手操作,利用手中的梯形,折一折、剪一剪、拼一拼,看看还能发现什么?
(设计的目的是让学生通过自由操作与联想,为随后推导梯形的面积计算公式打下基础,为实现数学知识的“再创造”作好铺垫。)
每位学生立刻动起手来,他们有的比画,有的对折,有的剪拼,想出一种后,又试着另一种方法,多数学生在尝试中都有所发现。在此基础上,我让学生把自己的发现在四人小组中进行交流,自己则穿梭于小组之间,倾听他们的意见,分享他们成功的喜悦。
然而在汇报时,一学生举手回答:“老师,我发现梯形的面积=(上底+下底)×高÷2”。
(这下可打乱了我的计划,原本这个环节学生只要发现:用两个完全一样的梯形,可以拼成一个平行四边形;一个梯形可以分成两个三角形;把梯形上下对折,再沿折痕剪开后所得的两个小梯形,也能拼成一个平行四边形……现在学生才说了几种想法,就被这位同学下了结论。而且还有几位同学在窃窃私语:这我也知道。该怎么收拾场面呢?我边板书边思考着,犹豫了一会儿,决定还是将问题抛给学生吧!)
我问学生:“对于这位同学的发言,你们有不明白的地方要问吗?”
马上就有一部分同学举起了手:“请问为什么要把上底和下底加起来,再乘高除以2呢?”“你怎么知道梯形的面积=(上底+下底)×高÷2?”……
我紧接着说:“是啊,我们怎么来证明梯形的面积就等于上底加下底的和乘高除以2呢?能不能谈谈你的初步设想?” 我随手在黑板上写下“证明”两字。
生甲说:“可不可以像三角形那样,先拼成一个大的平行四边形,然后来推导?”
生乙说:“能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,然后再来推导?”
生丙说:“看看梯形的面积与已经学过的平面图形有什么联系,根据它们间的联系进行推导。”
……
(真不简单,之前学过的几种平面图形的面积推导方法,马上就用上了。)
我兴奋地说:“同学们,你们的设想很好,看它是否有价值,关键还在于它能不能经受住实验的验证。请四人小组合作,讨论交流,比比哪一小组探究得最愉快、最有效。”
学生开始合作动手操作、尝试转化,我则深入到每个小组中,听取意见,并对有困难的学生作必要的提示和启发。
(在巡视过程中,我发现大多数小组主要采用了将两个完全一样的梯形,拼成一个平行四边形或长方形,能够用多种方法完整推导出梯形面积计算公式的小组不多。而在我的课件中预设着近10种的方法,学生能想到吗?心里虽然有些着急,但还是希望等会儿交流时,能听到精彩的发言。)
不能再等了,我赶紧让全班进行交流:“不少小组已经成功地推导出了梯形的面积计算公式,请向大家展示你们的研究思路与成果。”
生丁说:“我们组将两个完全一样的梯形拼成一个平行四边形。平行四边形的底相当于梯形的上底加下底,平行四边形的高相当于梯形的高。而梯形的面积是拼成的平行四边形面积的一半,平行四边形的面积 = 底×高,所以梯形的面积=(上底+下底)×高÷2”。
“说得多好啊!还有哪些组也想到了这个方法?”
生戊说:“我们组将两个完全一样的直角梯形拼成长方形。也可以得到梯形的面积=(上底+下底)×高÷2”。
生甲表示不同意:“老师,长方形是特殊的平行四边形,所以我认为这种方法与第一位同学说的方法是一样的。”
“你能把知识联系起来思考,很好!还有其他方法吗?
生丙说:“我们小组把梯形上下对折,然后将梯形分成两个小梯形,再拼成一个平行四边形。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形高的一半。所以梯形的面积=(上底+下底)×(高÷2)”。
“你们组很聪明,这种方法也很好!”我及时表扬,其他同学也向他们投去了敬佩的目光。“还有不同的方法吗?”
生乙说:“我们小组把梯形分成两个三角形,这两个三角形的面积分别为“上底×高÷2”和“下底×高÷2”,合起来得到梯形的面积=(上底+下底)×高÷2”。
“说得太好了!”我带头为他们组的精彩发言鼓掌。“其他组还有不同的方法吗?”
(而此时,已没有学生想发言了,他们都处于苦思冥想之中。10秒钟过去了,怎么办?如果继续让学生动脑筋想方法,有可能还处于如此尴尬的境地;如果把课前预设的与学生不同的另外几种推导过程告诉学生,那岂不是要把我的推导过程强加于学生。不如索性就此打住,就让他们掌握这几种推导方法吧,我想这样能更好地激发他们成功的学习体验和进一步学习的积极愿望。)
我激动地说:“同学们刚才能用不同的方法推导出梯形的面积计算公式,并能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。让我们继续创造吧!”
(看着学生们各个神采奕奕的样子,我知道我这样处理是对的。)
最后总结部分,我安排了学生回顾学习过程,总结学习方法。
“今天我们学习了什么新知识?现在你会比较两个梯形面积的大小吗?”“你是用什么方法推倒出梯形面积的计算公式的?”
学生踊跃发言。
“我是把两个完全一样的梯形拼成一个平行四边形,每个梯形面积是拼成的平行四边形面积的一半,所以,梯形的面积=(上底+下底)×高÷2”。
“我把梯形分割成两个三角形,……
……
“总之我们设法把梯形转化为已经会计算面积的图形,用不同的方法研究出了梯形面积的计算公式。”
学生的回答太精彩了,出乎我的意料,我兴奋地说:“这位同学总结得很好!转化的方法在今后的学习中还会经常用到。其实梯形面积计算公式的推导方法还有很多,老师再给同学们介绍几种。”接着我为学生演示了预设的几种方法,并请有兴趣的同学课下再研究研究。可喜的是,好几位同学已经开始“窃窃私语”地讨论开了……
反思:
“课堂应是向未知方向挺进的旅行,随时都有可能发现意外的通道和美丽的图景,而不是一切都必须遵循固定线路而没有激情的行程。”(叶澜语)它告诉我们:课堂上学生学习不是预约的,而是学生与教师、同伴 “思维碰撞、心灵沟通、情感融合” 下的 “动态生成”过程。在这一过程中,会有许多意外与惊喜。反思本课教学,谈几点不成熟的看法。
一、自主探究,让意外莅临课堂。
数学教学过程应该成为学生自主探究、合作交流的过程。而教师应根据学生掌握知识、技能的实际情况,精心设计一些有探索性的能揭示知识间内在联系的有价值的问题,把课本中的现成结论转变为学生可探索的对象,引导学生投入到探索与合作的学习活动之中,使学生在探索的过程中学习数学、理解数学。
首先,教师为学生营造和谐的学习氛围。
良好的环境和氛围可以增进教学民主,消除学生的紧张感,和谐的.课堂氛围是传授知识的无声媒介,是开启智慧的无形钥匙。只有在民主和谐的氛围中学生才能张扬自己的个性,培养自己的信念,释放自己的潜能,因此教师要尽可能的营造出一种宽松、和谐的学习场景。在本课中,我努力维护学生的自尊,对学生在课堂中表现出的独到的思维方法,认真倾听,并及时给予情感上的积极评价。对于学生回答出现的错误,鼓励他再听一听别人的意见;当学生题目做错时,也不直接批评,而是采取婉转的方式告诉他,让他认真审题,仔细计算。只有在这样的课堂中,我们才能感受到课堂中“生命”的涌动和成长,也只有在这样的课堂生活过程中,学生才愿自由地伸展童真、畅所欲言,让学生在这样的环境中从容地发现问题,提出问题,才会出现课堂中的“意外”。
其次,教师给学生提供充足的思维空间。
传统的课堂教学以知识传授为中心,极大地限制了课堂,课堂上的内容都给定得死死的,教师被圈住,不敢放手给学生,学生被圈住,只能坐在那儿被动地学,被动地听,无法对喜欢的东西做出反应。新课标指导下的课堂教学,教师必须留给学生充足的思维空间,让学生积极主动地参与认知的全过程,而其中的认知活动应当是探索性的、具有发现或发明性质的。在教学过程中,如果老怕学生耽误时间或“出乱子”,偏向与标准答案,教师一路领着孩子的手,不舍得放开,那么学生的思维空间变得十分狭窄,自然思维就打不开,所有创造性的思维火花将泯灭在萌芽时期。所以,只有为学生提供了充分的思考空间,活动空间,才能激发他们主动参与到课堂学习中来,使他们的思维在一个广阔的空间里自由驰骋,也才能产生多种“意外”,促成“生成”。
再次,教师要鼓励学生猜测、质疑、畅想。
优化课堂教学,激活学生主体意识,必须鼓励学生质疑问难。在教学中,教师要允许学生有不同的观点和看法。对学生在学习中找到的,多样化的想法给予鼓励和肯定;允许学生发挥想象和幻想,甚至找自己的麻烦。这节课中,我从让学生“质疑”入手,引导他们进行验证,让学生在自主探索、合作交流中“释疑”,学生也在研究、验证、总结、反思的过程中建构了知识。另外,在教学中为了避免挫伤学生的自尊心或把学生的学习引入误区,我经常先听听学生的想法,延迟评价判断。一方面,尊重学生,鼓励学生发表自己的见解和认识;另一方面,也激起了学生强烈的探索欲望,使教学更具有生命的活力。给学生一片自由畅想的天地,学生的个体才能敢想、敢问、敢说,积极主动地参与教学过程,达到获得知识,体验情感,促进发展的目的。可见,敢于猜测,勇于怀疑,善于畅想,正是课堂意外的生长点。
二、把握生成,让意外演绎精彩。
学生作为一种活生生的力量,带着自己的经验、知识、思考、灵感、兴致参与课堂教学,并成为课堂教学不可分割的一部分,从而使课堂教学呈现出丰富性、复杂性和多变性。他们的行为、思想会在课堂中发生相互作用,生成一种全新的教学资源。在实际教学中,这种在课堂中生成的教学资源最具有教学价值。这种教学资源来自于课堂本身,具有鲜活性,是学生参与的结果,对于学生来说有着天然的联系和亲近感。这种资源对于学生来说,参与性强,感受深,比一般的教材资源更容易被学生接受和理解。因此,教师要想方设法地利用这种意外生成的教学资源,睿智地进行处理,冷静地思考,巧妙地捕捉其中的“亮点”资源,并灵活地调整教学进程,才会使课堂在不断的“生成”中绽放美丽,呈现精彩。
《梯形面积》教学反思2
教学时我首先让学生回忆平行四边形和三角形的面积公式的推导过程,都用到了哪种解决问题的方法,然后提出问题:梯形是不是也可以像它们一样可以转化成已学过几何图形呢?在学生操作前,课件显示以下几个问题引导学生探究:
1、转化成的平面图形的面积与原来梯形的面积有什么联系?
2、梯形的底和高和转化后的图形的各部分又有什么联系?
学生操作后发现方法不止一种。我引导学生重点分析和课本上一致的'推导方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。其它方法有的拼出的是特殊的平行四边形,有的推导的过程较复杂,在课堂上让选择这样的同学简单交流,没有展示推导过程。最后小结不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)×高÷2。
第一、在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深入。在以后的教学中,教师应及时筛选有用的信息,并对其分类和引导,有序展示。
第二、其它方法没有展示推导过程,想到此方法的学生的个性没得到张扬,也没有给其它学生充分的思考余地,导致最后小结不管用哪种方法来推,都能推出一样的面积计算公式时,部分学生有疑惑。
第三、学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也是我们数学教师长期要培养学生的一种数学学习的品质。
第四、有的学生没有完成推导梯形面积的过程,在以后的合作探究中,应让小组内再分为一帮一,以帮助学困生。
《梯形面积》教学反思3
一、注重有关知识、方法的复习,为梯形面积公式的理解和运用做好充分的准备。
在复习引入环节,让学生会议平行四边形、三角形、梯形的面积公式的推导过程,感受梯形面积与它的上底、下底和高有关系,为学生计算梯形的面积做好认知准备,有利于他们利用已有知识推动新知学习。
二、充分发挥学生的主题作用,让学生自主运用梯形面积计算公式。
在学生运用梯形面积公式的活动中,充分发挥学生的主体性,让他们以小组为单位,通过学具的割补、拼摆,共同探索将梯形转化成会计算面积的平行四边形或三角形各种办法。在展示汇报中,一方面让学生进行全班**流,使学生感受到应用梯形面积计算公式的不同方法,另一方面,使学生从各种的方法中,发现相同的地方,从而熟练运用梯形面积的计算公式。
三、尝试运用与练习反馈相结合,促使学生对梯形面积计算的掌握和解决问题能力的.培养。
在出示梯形面积公式后,为了让学生能更好地运用公式计算梯形的面积,培养学生解决简单实际问题的能力,在教学中,先创设情境,让学生在情境中感受到梯形面积计算在现实生活的实用性,通过情境促使他们对问题的理解,最后才让学生独立进行计算。在反馈练习中,把教师的指导和学生的独立练习结合起来,既提高了练习的有效性,又培养了学生运用知识解决数学问题的能力。
不足之处:
在计算过程中,一些学生由于粗心,出现了一些错误。还有个别学生出现漏算、多算的现象。今后还应重点培养学生灵活运用知识的能力。
《梯形面积》教学反思4
《梯形面积计算》这节课的内容是在平行四边形面积、三角形面积计算的基础上进行教学的,主要是引导学生通过梯形面积公式的推导去理解和掌握梯形面积计算公式。根据新课程新理念的要求教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
一、动手操作,拼一拼摆一摆 ,创造性的使用教材
在教学中,我让学生动手操作,分别将三组两个完全一样的梯形拼成一个平行四边形,并比较每个梯形与所拼成的平行四边形各部分间的'关系,然后学生同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知梯形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但课堂上学生活动的时间不够多,这是本课中的缺憾。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨平行四边形面积公式与梯形面积公式有何不同,梯形面积公式中的“除以2”是怎么来的?在探讨这个问题时,我采用小组讨论的方式,在讨论中发现问题,解决问题,这样既培养学生的合作精神,又活跃课堂气氛。
我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以看出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要急需改造的地方。
《梯形面积》教学反思5
本节教学内容是梯形的面积,是在学过的平行四边形和三角形的面积的基础上进行教学的。教学目标有两个:
一、在自主探究、合作交流中经历梯形面积的推导过程,掌握梯形面积的计算方法;
二、能利用梯形的面积公式解决实际问题问题。其中,目标一的达成度挺好的。目标一的达成之所以很理想,是因为本节课中我努力做到了以下两点。
一、大胆尝试,自主探究,亲历知识的获取过程。“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的`计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
二、强化实践,为学生搭建创新的舞台。著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。这节课中,也存在一定的不足,如学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
《梯形面积》教学反思6
星期五,我们几位年轻老师有幸得到教育局高老师的指点,对我们的课堂教学进行指导。
我讲的是梯形的面积一节。第一部分是认识梯形,第二部分是梯形面积公式的推导过程得出公式,第三部分是面积公式的实际应。
这节课,高老师提出了非常深刻的问题。在刚开始由平行四边形引入梯形时,画成了等腰梯形,太具有特殊性,因此一下子跳到了后面的学习,这里应该画一个一般的梯形,体现一般性。其次是数学语言的描述不准确,“梯形的高和平行四边形的高一样”应该描述为“梯形的高与平行四边形的高相等”。还有是知识的缺漏,梯形的高有无数条没有向学生们讨论,另外在“用两个完全相同的`梯形拼一个平行四边形”时,没有说好前提是“两个完全一样的梯形”,虽然在后面的练习中提到,但是学生的第一印象是非常重要的,这样就有点盲羊补牢,要重视学生的第一印象,此处学具也少,应该让学生再拿两个不相同的梯形进行拼凑,让学生充分体验“完全一样”。在学生上前展示的过程中,可以把梯形贴在黑板上,这样更容易观察。在这节课中我讲的内容很多,高老师提意量可少,但内容要精,要全面。对于数学的学习,高老师提到了数学思想“转化思想”,知识有变化,思想却不会变解决问题的方法却不会变,这一点是非常重要的。
关于青年教师的成长,高老师提出了很重要的一点就是“悟”。对于教学除了多看、多听、多学习,最重要的一点就是多思考、多反思,思考可以把别人的东西内化为自己的东西,也可以对某一件事恍然大悟。因此在教学中要多“悟”。
《梯形面积》教学反思7
一、教学内容:五年级上册第88页《梯形的面积》
二、教学目标:
1. 知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。
2. 过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。
3. 情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。
三、教学重难点
教学重点:
探索并掌握梯形面积是本节课的重点
教学难点:
理解梯形面积计算公式的推导过程是本课的难点。
四、教学过程:
(一)、复习旧知
出示(点)展开想象引到(线段)又通过想象引到互相垂直的两条线段
同学们看这个图形,你会想到什么?(平面图形的底和高)想象这是什么图形的底和高,用工具在作业纸上将想象图形的另一部分补充完整,并在图下写出你所知图形的面积计算公式及字母表达式。
学生汇报时板书所学图形的图片及面积公式,回忆三角形和平行四边形的面积推导过程,引出转化的数学思想。在学生汇报梯形引出课题,并板书课题。
【设计意图:本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积,渗透了转化的数学思想,即复习了旧知,又引出了新知,而且培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力。】
(二)、探究新知
联系已学图形面积计算公式,猜一猜梯形的面积计算公式可能是怎样的。基于平行四边形面积和三角形面积都与底和高有关,学生可以大胆猜测,然后探究验证。桌上的学具超市里放有直角梯形、一般梯形等若干个,有完全一样的,也有不一样的。然后分组探究。具体做法:
⑴自选学具。(每个小组发如下梯形图片和探究表各一份)
形状个数拼成的形状结论
……
⑵提出要求:
①做一做:利用手中的学具,选择你所需要的梯形,或拼、或剪…转化成一个以前我们所学的图形。
②想一想:可以转化成什么图形?所转化成的图形与原来梯形有什么联系?
③说一说:你发现了什么,并尝试推导梯形的面积计算公式。
⑶小组合作,操作、观察、交流、填表,教师参与讨论。
【设计意图:此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。凡是学生能想到、做到、说到的教师不限制、不替代、不暗示,为学生提供了一个充分发挥才智自己想办法解决问题的思维空间,在这里学生可以按照自己的想法任意剪拼一个梯形,摆拼两个梯形,使学生通过尝试——失败——成功的亲身体验,主动发现公式,注重了学生推理能力的培养,从而有效地突出本节的重点,突破本节的难点。】
⑷全班交流汇报。(教师根据学生的回答借助演示)
a、学生可能从以上梯形中选择两个完全相同的梯形,拼成一个平行四边形或者一个长方形。他们可能得出以下结论:两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底等于梯形上底和下底的和,高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半。学生还可能会有以下做法。
b、沿梯形的对角线剪开分成两个三角形
c、把一个梯形剪成一个平行四边形和一个三角形
d、沿等腰梯形的一个顶点做高,剪拼成一个长方形
e、沿梯形中位线的两端点分别向下做高,剪拼成一个长方形
f、从梯形的两腰中点的连线将梯形剪开拼成一个平行四边形。
……
对学生以上的做法教师给予充分的肯定和表扬。只要学生能把以上意思基本说出来,再通过小组之间的交流、互补,使结论更加完善。
(其中第一种方法重点解决,其他方法学生汇报几种算几种不做一一详解。)
⑸归纳公式。根据探究表的结论,让学生自己归纳出梯形面积的计算公式。
梯形的面积=(上底+下底)×高÷2
如果用字母S表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示:
S=(a+b)h÷2
【设计意图:对多种方法各抒己见,在交流的过程中互补知识缺陷,学生在猜想—操作—争辩—演示—叛变—互补的过程中深刻的理解梯形面积的推导,纠正学生的错误猜想,巩固正确的推导思路。】
(五)深化巩固
1、尝试计算
a、计算一个一般梯形的面积。
b、梯形面积计算帮我们完成很多伟大的壮举,介绍三峡水电站和南水北调工程。出示例题:
(1)我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。
(2)一条新挖的水渠,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积是多少平方米?
借助模型和让学生了解横截面、渠底、渠高等词义。在两道题中任选一道解答。
【设计意图:运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。】
2、学生观察图形,解决以下问题:梯形的上底缩小到一点时,梯形转化成什么图形?这是面积公式怎么变化?当梯形的上底增大到与下底相等时,梯形转化成什么图形?这时面积公式怎么变化?当梯形的上底增大到与下底相等,并且两腰与下底垂直时,梯形就变成什么图形?面积公式怎么变化?从这几个公式的联系,可发现什么规律?
【设计意图:本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。】
3、总结,反思体验
回想这节课所学,说说自己有哪些得失?
【设计意图:这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。】
【教后反思】:
五年级下册88页《梯形的面积》是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。本课通过出示学具超市—小组合作探究—展示、交流—引导学生自己总结公式—应用梯形面积的计算公式解决实际问题—构建知识体系完成教学目标。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用的.所学的方法进行梯形的面积计算公式的推导;因此,我大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的讨论,引导他们自己去发现问题,解决问题。提供给学生几种不同形状的梯形去探究,目的是让学生经历从特殊到一般的归纳过程。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。分析如下:
突出体现了两个亮点:
1、尊重学生的个性发展,允许学生在学具超市中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。
2、设计了一系列的探究活动、让学生在想、说、拼、议、评、等过程中复习旧知,学习新知。这些都有利于拓宽学生的思维空间,提高学生的动手操作能力和知识迁移能力。在上课时也显示出几点缺陷,
(1)、学生汇报时我没有注意让学生对两个完全一样的梯形拼成了一个平行四边行作重点理解,因而在引导公式时学生理解有难度,我才又在投影下重合两个梯形,让学生体会梯形的上底与下底的和就是平行四边形的底。造成学生失败后再补救的局面。
(2)、公式的推导形式单一,造成这一现象源于学具准备不科学。或教师引导不到位。
(3)、学生用字母代数推导公式时,我不注意先设定图形的那一部分分别用哪个字母表示,而是直接让学生生硬的套用,显示出教师上课的随意性。以上种种说明我的教学理念还很滞后,有待于更新、学习。)
《梯形面积》教学反思8
本节课的内容是在学生学习了平行四边形的面积、三角形的面积以及梯形的图形特征基础上进行教学的。在前面的学习中,学生已经能够通过拼摆独立推导出图形的面积计算公式,初步领悟了图形转化的数学思想。
成功之处:
多种方法推导梯形的面积,发挥学生的创造力。在教学中首先让学生用自己准备的两个完全一样的梯形通过拼摆,独立推导梯形的面积计算公式,即用两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是所拼成的平行四边形面积的一半,平行四边形的底等于梯形的上底与下底的和,所以梯形的面积=(上底+下底)×高÷2。然后让学生思考能不能根据一个梯形进行面积公式的推导呢?从而得出以下几种方法:
(1)把梯形剪成一个平行四边形和一个三角形,梯形的'面积=平行四边形的面积+三角形的面积。
(2)把梯形剪成两个三角形,梯形的面积=两个三角形的面积之和。
在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解了梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。
不足之处:
由于用多种方法探索梯形的面积计算公式,导致基本方法中出现部分学生不会叙述。
再教设计:
突出基本方法的教学,注意其它方法的时间分配。
《梯形面积》教学反思9
《梯形的面积》是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,教材如此安排的目的`是希望学生在探索活动中不仅巩固这种思考问题的方法,而且能初步形成这种思考问题的习惯,因此,本节课的重点,仍放在帮助学生形成思考问题的习惯上。
一、复习旧知,引入新知
本节课首先让学生回顾上几节课的内容:长方形的面积公式,平行四边形的面积公式和三角形的面积公式。在复习过程中让学生容易将转化的方法迁移到这节课来。
二、推导梯形的面积公式
梯形的面积公式的推导有多种方法,比如两个相同的梯形拼接成一个平形四边形,从一个梯形的对角线剪开,成两个三角形,还有从梯形的中位线剪开后拼成平行四边形等到。我鼓励学生在自主探索的基础上进行汇报和交流,让学生在交流中明确是利用转化的思想把梯形转化成已知的图形来推导的思想,并培养学生观察、操作、比较、推理等逻辑思维能力与初步的假设、实验、验证等科学探究能力。
三、在练习中巩固提高
本节课的练习既有直接运用公式计算的简单运用,又有等积变形的思考,还有计算垒成梯形的圆木的根数。对于计算圆木的根数,有些学生是层层计算解决,有些学生把这堆圆木的横截面转化成一个梯形,运用梯形面积公式来解决,在交流中让学生认识运用梯形面积来计算的方便性。
《梯形面积》教学反思10
一、提出问题,激发兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的',所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?学生兴趣盎然。很快就表示出两个三角形的面积,即:上底高2 、 下底高2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
《梯形面积》教学反思11
梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。
下面就从以下几个方面进行剖析:
(一)以旧促新,探究新知
1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的实质性联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造条件。
2、推导梯形的面积计算公式。
在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的'梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。
接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的高是梯形的高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。
本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。
(二)学以致用。
在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)
总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变 "教师讲授"为"研究交流",变"灌输"为"引导",较好地处理了"主体"和"主导"的关系,有利于培养学生学会学习,学会创造的良好素质。
《梯形面积》教学反思12
在梯形的面积计算一课中,我充分利用学生已掌握的平行四边形,三角形面积公式的推导方法,启发学生积极思考。
通过复习,让学生明白推导梯形面积公式的方法与推导三角形面积公式的方法相似,都是把不熟悉的平面图形转化为熟悉的平面图形来计算。让学生用两个完全一样的梯形,想办法把它们拼成一个平行四边形,引导学生观察,比较梯形的上底、下底和高与平行四边行的底和高有什么关系?梯形的面积与平行四边形的面积有什么关系?这环节我是让学生以小组讨论的方式进行的,通过交流,学生很容易得出梯形上底和下底的和,同平行四边行的底相等,梯形的高与平行四边形的高相等,梯形的面积是拼成的平行四边性面积的一半。
最后是让学生尝试练习求出梯形的`面积,并概括出梯形的面积公式。本节课主要是让学生自主去探索梯形的面积公式,这样有利于学生思维的发展。但也有一些不足,学生在探索中,对个别学生辅导不够,在今后的教学中,要注重让每一位学生都积极参加到探究的过程中,真正让学生在动中学。
《梯形面积》教学反思13
本课内容:课本第14页至第15页例题6、例7及“试一试”、“练一练”
本课设计:一、复习旧知、导入新课二、自主探索、获得新知三、巩固练习、学以致用
关于第二个环节的反思。
课前我让学生先将课本第117页四组梯形剪下,并且逐一标上数字,课堂上做这道题时我直接让学生拿出事先准备好的图形,分组动手操作并填写表格,然后讨论表格后的讨论题。设计教案时,本以为图形已经标号分组,学生操作分析时应该不会有问题,但实际操作时,仍然有各种各样的问题,主要有:1.将两个完全相同的梯形转化成一个平行四边形的`操作比较生疏;2.仍然有学生填写顺序出现错误;3.转化后的梯形数据分析有误;4.小组活动秩序混乱。5.回答讨论题时仍有困难。
现在回想起来,如果备课时能够预想到这些情况,那么课堂上这些错误都是可以避免的。我可以在讲授例题6时,借助事先准备好的图形,向学生演示怎样将两个完全相同的梯形转化成一个梯形,并让学生模仿操作,而不是仅仅让学生观看课件里的动画演示。在学生操作例题7时,我可以先向学生分别展示各组图形以便学生对号入座,而不是全完放手让学生自己操作。在解决讨论题时,我可以带领学生结合图形来分析数据,回答问题。如果我能这样安排的话,课堂纪律应该更好一些,教学效果也可以更好。
当然本节课的教学,还存在着其他方面的不足,例如课堂上仍然是以教师为主,教师说的过多,学生处于被动地位。以后我将积极去听师傅董雯雯老师的课,多听多问多请教,多多吸取前辈的宝贵经验。
《梯形面积》教学反思14
《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。
在设计这一课的教学时,我主要考虑体现以下这样几个方面:
1、紧密联系生活。让数学源于生活,归于生活。
数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。
2、体现学生的主体性,让每个学生都能主动参与学习。
学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习
的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的'意识。
3、着重体现学生主动建构知识意义的过程。
本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。
在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。
《梯形面积》教学反思15
1、通过教学,让我更加明白:
要充分相信学生。新课程理念中,要让学生通过自主探究,主动获取知识。这节课从学生的生活实际问题出发,一开始就让学生感受到生活中很多时候要计算梯形的面积,从而引发学生探究梯形面积的学习欲望。在这种内驱动力之下,学生调动自己已有的知识经验,探究出了很多种方法,培养了创新思维能力和自主学习的能力。
2、学生的创新能力不是一节课就能培养起来的。
这节课学生能够想出那么多种方法,要以前几节课的探究平行四边形和三角形的面积为基础,学生的自主探究能力要经过一定量的积累,而不是一蹴而就的。但是如果长期这样得到训练,学生探究所需要的时间就会越来越短,创新能力也会越来越强。
3、本节课的设计考虑到了一个首尾照应的'艺术原则。
课的导入部分以优美的音乐伴随引入生活中的问题,课的结尾同样以伴乐欣赏生活中的梯形。在轻松的氛围中让知识得到延伸,又遵循了“数学知识从生活中来,到生活中去”的理念。
4、这节课还经过研究提炼,让我认识到:
在学生探究各种方法的时候,不必马上让学生统一到梯形的面积计算的规则公式中来。有套用模式之嫌。可以在最后让大家一起观察,把各种方法进行沟通,理解,在统一。
【《梯形面积》教学反思】相关文章:
梯形的面积教学反思03-27
《梯形的面积》教学反思08-23
《梯形面积》 教学反思08-31
《梯形的面积》的教学设计及反思01-22
《梯形的面积》教学反思15篇03-17
《认识梯形》教学反思02-16
认识梯形教学反思03-07
《梯形的认识》教学反思08-22
《面积》教学反思03-13