分数除法的教学反思
身为一名优秀的人民教师,课堂教学是重要的工作之一,通过教学反思可以很好地改正讲课缺点,那么应当如何写教学反思呢?下面是小编为大家整理的分数除法的教学反思,欢迎阅读与收藏。
分数除法的教学反思1
六年级上学期数学第二单元是“分数除法”,其中第一小节是:“分数除法的意义和计算法则”。在教学上,“分数除法的意义”好办,因为有分数乘法和小数乘法除法的意义做基础,在课堂上,只要按课文编排稍做解释学生就可明白。
对分数除法计算法则,我对课文编排讲解内容作了一下变动。这一小节有3道例题,分别讲“分数除以整数” 、“整数除以分数” 、 “分数除以分数”。分数除法的计算法则如何得来,如何向学生讲得明白,一直是老师们所苦恼的问题。不讲嘛,似乎是没有完成教学任务,讲吧,即使是老师认为自己讲得很明白,其实学生真正理解吗?我认为,学分数除法的关键是记牢、熟练运用“计算法则”,至于这计算法则是如何得来的,可暂时忽略。我把这3道例题分为两节课讲解。第一课时讲“分数除以整数”,通过例1,“把6/7米铁丝平均分成2段,每段长多少米?”使学生明白,把一个数平均分成2份,既可以用除法“÷2”表示,也可以用乘法“×1/2”表示,也就是说“÷2”=“×1/2”,进而,把一个数平均分成3、4、5……,既可以用÷3、÷4、÷5……表示,也可以用×1/3、1/4、1/5……表示,而1/2是2的倒数、1/3是3的倒数……,从而得出“除以一个数(0除外),等于乘这个数的倒数”。在和学生学习过程中,尽管我用的是课本例1的教学素材,但在教学过程中,我一直有意忽略被除数和除数到底是分数还是整数的问题,只是强调被除数除以除数等于乘除数的倒数。教学完例1,就让学生做相应的练习(强化“除以一个数(0除外),等于乘这个数的倒数”的'概念)第二课时,同学生学习例2、例3。课文中例2“一辆车2/5小时行驶18千米,1小时行驶多少千米?”,是详细地讲解了为什么18÷2/5最后可以表达为18×2/5,而我只是根据题意列出18÷2/5后,让学生回想例1的学习过程和分数除法计算法则,让学生自己说出18÷2/5=18×2/5,然后计算得出结果,而省略了中间的讲解过程。接着学习例3“小刚3/10小时走了14/15千米,他1小时走多少千米?”“14/15÷3/10=14/15×3/10”。这两道例题是应用题(但在教材安排中,没有把它放在分数除法应用题范围内),我没有把注意力放在计算法则的推倒过程上,反倒是根据题意为什么这样列式花了些时间。
3道例题学习完(还包括相当量的练习),用了两节课,学生已经掌握了“甲数除以乙数(0除外)等于甲数乘乙数的倒数”的分数除法计算法则。根据学生情况的反馈,学生掌握这一小节的知识是扎实的。
现在我还在想,既然乘法不强调被乘数与乘数,如,一本书5元,买3本要多少元?既可以5×3,又可以3×5,只要结果是15元就算对,(但我坚持认为5×3和 3×5表达的意义是不一样的,不过,现行教材认为结果一样就行)那么,在学生不太明白算理而只掌握计算方法,在教学上应该是允许的。也许我这样做有点离经叛道,不符合现在的教育教学观念,但要求一定要让学生明白所有算理教学才算成功,似有点不太实际。学生(包括成人)很多时候知道要这样做并且做对了,已经是完成学习任务了,又何必强求一定要“知其所以言”呢?
分数除法的教学反思2
本课教学的内容是分数除以整数,在教学过程中,要让学生理解分数除以整数的意义,并掌握分数除以整数的计算方法。有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式。
为了帮助学生更好地理解分数除以整数的意义和计算方法,教学中,运用数形结合的教学思想。把符号语言和图形语言很好地结合起来,把抽象的过程直观展示出来,通过学生的直观体验,将文字语言和图形相结合,从而使学生理解分数除以整数的意义和计算方法。
但是学生自主探究,合作交流时时间的不多,没有给学生更多的表达空间。部分学生对分数除以整数的计算法则理解不够,除法变成乘法后,除数没有变成相应的倒数。分数除以整数时,应该乘这个整数的倒数。没有正确理解分数除法结果的规律,一个数除以比1小的.数,结果比这个数要大。有些比较大小的题目可以不用计算,直接运用计算规律就可以判断出来,但是学生不太会应用。
在今后的教学中,我要加强对学生的训练,让学生真正理解、掌握做题技巧,做题方法,真正的学会学习。
分数除法的教学反思3
本节课重点是理解分数与除法的关系、带分数与假分数互化。难点还是理解除法与分数的关系,虽然在复习旧知,如:把6米的绳子平均分成两段,每段长多少米?简简单单的复习为探索新知做铺垫,可课件呈现课件呈现把一块蛋糕平均分给2个小朋友,每人能得到几块蛋糕?学生把刚才复习的除法计算的知识进行迁移,很容易能用算式1÷2来计算,有的学生会直接用二分之一表示,我引导:既然都是正确,就说明可以用等于号了。
接着从课本的例子:如果有7块蛋糕,要分给3个小朋友,每个小朋友又能得到多少呢?学生很快就能列式表示,并用分数表示结果。然后让学生观察两个式子,看看分数与除法有什么关系?先让学生同组交流讨论,再全班反馈交流,学生能说出分数和除法有关系,就是说不出所以然,我只好问:这个分子和除法的什么好像相当?总算是把这些关系理清,可学生提出疑问:“能不能说分子等于被除数?”我说不行,只能用“相当”更恰当。
对于假分数化带分数,我从上次作业的'一个图形引导,二又八分之六等于八分之二十二,完整一个单位“1”有八份,那么2个单位就是十六加上不完整的6就是22,看来分子除以分母后的商是整数部分,余数是新的分子,反过来是带分数化假分数,可以引导学生从被除数=除数×商+余数,这样学生就很明朗。
特别强调的是:在带分数和假分数互化时,一定要演算,培养演算的习惯是学生学习中不可缺少的。
本节课遗憾的是讲得太多,学生思考的时间少了,虽然学生认真听讲,但不利于学生的探究能力,值得注意。
分数除法的教学反思4
为了更好到激发学生主动积极地参与分数除法应用题学习的全过程,引导学生正确理解分数除法应用题的数量关系。因而在设计时,我从学生已有知识出发,抓住知识间的内在联系,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系,通过迁移、类推、分析、比较,找出分数乘除法应用题的区别和联系及解题规律。
一、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数应用题的关键是什么时,我故意不作任何说明,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,是因为大多数时间我在课堂教学中为了自己省心、学生省力,往往避重就轻,草草带过,舍不得把时间用在过程中,总是急不可待,直奔知识的'技能目标,究其根由,在于教师的课堂行为,我缺乏必要的耐心。或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。
因此在今年整体的教学中已经改变了自己的教学方法,尤其在本节课上我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。也只有这样才能真正落实《数学课程标准》中,“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,让学生的思维真正得到发展。
二、多角度分析问题,提高能力。
在解答应用题的时候,我通过鼓励学生尽量找出其它方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
三、在充分的感知、体验的基础上比较分析,水到渠成的完成求“1”的量用方程做或算术法做,沟通了新旧知识的联系,又揭示新知识的本质属性。
四、不仅巩固知识,给不同层次的学生起到不同的教学作用,又能为归纳求“1”的量的应用题的方法奠定基础。
分数除法的教学反思5
一、教材的处理
按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。
二、运用了体验式教学模式。
启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。
体亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的成果。
总结内化阶段。引导学生比较两道例题,找出两道例题的'异同,感悟到解决问题的一般方法。
应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。
(2)拓展练习,通过让学生解决较难的此类问题,进一步培养学生分析问题、解决问题的能力。
三、关注解决问题的方法指导
这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。
四、不足之处
在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法, 这样便于学习“稍难的分数、百分数的解决问题”。
总之,数学教学注重的是培养学生的逻辑思维。所以不管在什么类型的应用题教学中,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。
分数除法的教学反思6
首先通过课前谈话解决了分数除法的意义。接下去重点来研究第一环节分数除以整数的计算方法,我出示了这样一道例题:城西中心小学占地约为9/10公顷,如果按面积平均分成三块不同的区域,每块区域占地多少公顷?题目一出,学生马上就把算式列出来了,9/10÷3,怎么计算呢?通过四人小组讨论合作,最终相出了好几种方法。如9/10÷3=0.9÷3=0.3(公顷)9/10÷3=(9/10×1/3)÷(3×1/3)=3/10(公顷)9/10÷3=9/10×1/3=3/10(公顷)(因为把一块地看作一个整体,平均分成三块,其中的一块就占了这块的.1/3,所以直接乘以1/3)等一些方法,通过比较最终得出9/10÷3=9/10×1/3=3/10(公顷)这种方法简便。接着我把9/10该为10/11,让他们再用自己发现的方法进行计算。结果学生们发现还是用这种方法简便,10/11÷3=10/11×1/3=10/33(公顷),最后,让他们观察、讨论、交流9/10÷3=9/10×1/3=3/10(公顷)与10/11÷3=10/11×1/3=10/33(公顷)这两题的计算方法,学生们发现除以整数等于乘以整数的倒数。第二环节解决一个数除以分数的计算方法。我把例题该为城西中心小学占地约为9/10公顷,如果每块区域占地为3/10公顷,平均分成几块不同的区域?有了第一题的基础,大部分学生马上就想到9/10÷3/10=9/10×10/3=3(块),我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你在把9/10换成10/11的话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。接着我又问如果老师把9/10公顷换成1公顷,你认为又该怎么计算呢?学生们说还是乘以它的倒数。那么从中你发现了什么?分数除法的计算方法学生们脱口而出。第三环节,做一些练习。
在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,教师教的快乐。
分数除法的教学反思7
《分数与除法的关系》教学反思分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。教师能从整体上把握教材,激励学生积极参与数学活动:问题让学生自己解决,方法让学生自己探索,规律让学生自己发现,知识让学生自己获得。课堂上给了学生充足的思考时间和活动空间,学生有了表现自我的机会和成功的体验,发挥了主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,使学生独立地发现并获得分数与除法的关系,发展了学生的思维能力,达到教学目标,突破了重点和难点。
我在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作,演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力差的学生,在演示说明的时候,叫的学生少,如果能多叫几个学生演示说明,再加上教师的点拨,我想这部分学生在理解上这难点时,就会比较容易。
学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学把3块饼平均给4个人,每人应分多少饼?有很多同学都知道怎样分,但说得不是很明白。我让一个人说了后再请其他同学用数学语言完整的说一遍,这样长时间可以训练学生的'用数学语言来表达德能力。而叠在一起分的方法没有出现,我只好亲力亲为了,边演示边说明,但有部分同学不能理解。课后想来,如果我在一块一块的分时,追问一句:这种方法单位一是什么?肯定会有学生想到可以把一块饼看做单位1也可以把三块饼看做单位1啊!也许后面的方法就可以由学生说出来,用他们的语言来表达,他们会更有共鸣,更能理解。在以后的备课中,要把课堂预设充分考虑周全。备课不仅要备教材更要备学生,这样才能真正发挥学生的主体作用。
分数除法的教学反思8
今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:
1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?
2、通过操作,结果明明是将单位“1”平均分成12块,取出其中的3块,为什么不能用3/12块表示呢?
针对上述两个问题,我在教学中主要采取了以下一些策略:
1、复习环节巧铺垫。
在复习导入中增加一道用分数表示阴影部分的'练习。其中一幅图是圆的3/4,另一幅图是圆的3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。
2、审题过程藏玄机。
在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。
通过上述改进措施,学生理解3/4相对容易一些。
分数除法的教学反思9
德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:
1、教学内容“生活化”
《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。
2、解题方法“多样化”
《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的.成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。
3、师生交流“情感化”
数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。
4、值得商榷的几个方面:
(1)形式能否再开放一些
(2)优生“吃好”了,能否让差生也“吃饱”
分数除法的教学反思10
《分数和除法的关系》教学反思分数和除法的关系主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是34=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。
验证34是否是3/4块,也就是每人分得是3/4块饼吗是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解3/4块饼得到的过程,形成丰富、准确的表象。
观察等式34=3/4、35=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的.基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。
情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。试一试是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位1平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成高级单位时,用除以进率的方法解决问题,即710=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。
分数除法的教学反思11
“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:
1。以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的'过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
2。分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:
1。提供丰富的素材,经历“数学化”过程。
分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。
2。问题寓于方法,内容承载思想。
数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。
就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。
分数除法的教学反思12
(看了小雒老师的这篇文章,变亦喜亦忧。喜的是,雒老师很用心,解答分数乘除法问题的规律是梳理的一清二楚,头头是道;忧的是,这样教学直奔了目的地,沿途的风光可曾让学生领略?二十年前,我初踏上岗位,熟记的就是文中的所说这个简便易行的口诀。今天,我们教师心中仍然要有这个,但是提醒大家:只让学生记住这个口诀行吗?我们要培养的不是解题的机器。我们应该仔细想一想:这部分教学的过程性目标是什么?学生能从中受益吗?解题过程中学生的思维能不能得到提高?让我们共同讨论~于华静)
最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:
1、一找、二看、三判断
分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。
2、弄清对应量、对应分数、单位‘1’
教到复杂的'分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1’”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
3、线段图、数量关系、关系转化
(1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。
(2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。
(3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。
总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多
加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。
分数除法的教学反思13
一、结合学生的生活学数学。
“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。”教学改变复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,向他们提供充分的从事数学活动和交流的机会。
二、参与学习过程,让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
教学中把“自主、合作、探究”的教学方式。和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。学生毕竟是初学者,他们的自主、合作、探究肯定是不全面的,各种水平的学生在自主、合作、探究中所学的层次也是不一样的。所以教师的讲解是必要的,尤其是概念性的知识,可以为学生节约许多时间。但教师在教学中要准确把握自己的地位。帮助优生建构知识结构,帮助一般学生理解题意掌握知识。真正把自己当成了学生学习的帮助者、激励者。发挥学生的主体地位,重视教师的.主导地位。
三、多角度分析问题,提高能力。
在分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如“是、占、比、相当于“后面的数量就是作单位“1”的数量,画线段图就先画作单位“1”这个数量,再画与之对应的数量的线段图;“知“1”求几用乘法,知几求“1”用除法”等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
分数除法的教学反思14
这节课是分数除法教学的起绐课。分数除法的意义及计算方法是本单元的重要内容,也是学生理解的困难之处。我是想作为分数除法的第一个知识点,利用折一折,算一算等活动,让学生在实际操作中借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。分数除以整数是学生学习了分数乘法和认识了倒数的基础上进行的,学生之前已掌握了分数乘分数的计算方法,为本节课的新知学习起到了良好的.铺垫作用。
在教学中注重以下几点。
1、 强调知识的迁移和类推。
在教学中,先复习整数除法意义再进行分数除法意义的教学,可以使学生利用知识的迁移和类推很容易得出分数除法的意义。
2、 以自主探索为主。
提供给学生自主学习的机会,给学生充分思考的空间和时间,允许并鼓励他们有不同算法,尊重他们的想法,哪怕是不合理的,甚至是错误的,让他们在相互交流、碰撞、讨论中,进一步明确算理。
一节有效的课堂应该建立在有效的小组合作上,整节课下来我发现在小组合作方面我还应多钻研,如何调动小组的积极性?如何让小组的每一位成员都乐于参与其中?将是我接下来主要的研究方向,真正做到合作、交流、共同探究!
分数除法的教学反思15
根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:
从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:
一、是多出这类练习题进行训练;
二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的`数量关系——根据数量关系列算式解答.
比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:
( )×2/5=( )。
好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。
再结合例题加以说明.
(1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。
(2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?
帮助学生复习回忆有关解决这一类问题的基本方法。
“一找”找出关键句。
第(1)题的关键句是:头部占二十一分之五,
第(2)题的关键句是:是其中的十六分之五,
“二列”
帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。
第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度
第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量
“三算”
帮助学生根据等量关系式列出算式并完成计算。
第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。
第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.
总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.
【分数除法的教学反思】相关文章:
分数除法教学反思06-09
分数与除法教学反思07-16
分数除法的教学反思06-17
《分数除法三》教学反思10-13
分数除法单元教学反思07-18
分数除法二教学反思09-04
《分数与除法》教学反思(15篇)05-15
《分数与除法》教学反思15篇10-13
分数与除法教学反思(15篇)09-12
数学分数与除法教学反思10-10