- 《实际问题与方程》教学反思 推荐度:
- 相关推荐
《实际问题与方程》教学反思
作为一名人民老师,我们要有一流的教学能力,通过教学反思可以有效提升自己的课堂经验,如何把教学反思做到重点突出呢?以下是小编为大家整理的《实际问题与方程》教学反思,希望对大家有所帮助。
《实际问题与方程》教学反思1
这节课我们研究了实际问题与二元一次方程组中的行程问题,教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,从而解决了生活中的几道实际问题。重点讨论了航行、相遇、追及三大类型。纵观本节课,其中有精彩之处,但也有很多不足,现反思如下:
航行问题很简单,在学习的过程中先回忆了航行问题中的`基本公式,然后同学们讨论题目中的等量关系,最后设出未知数列出二元一次方程组,让同学们经历了回顾旧知、应用旧知解决问题的过程。 在讲解相遇问题与追及问题时,我选了两名同学分别相向而行和同向而行,表演了相遇和追及,让这两个问题动了起来,激发了学生的学习兴趣。然后用两种颜色的彩粉笔在黑板上分别来代表两个人,一边讲解一边画出两个人行走的路线,这样就将枯燥的代数问题转化为直观的几何问题,大家很容易就从图示中发现隐藏在其中的等量关系,从而列出二元一次方程组解决问题。
总之,从整节课来看,我主要通过创设情境、自主探究、合作交流、精彩点拨、拓展延伸、归纳升华六个环节来进行,学生的情绪比
较饱满,思维比较活跃,能积极分析问题解决问题。我较好地完成了教学目标,但还有一些有待探索与需要改进的地方,如:时间把握得不够好;在教学中,没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥,他们的各种方法没有及时的展示。今后,我还要多加努力,调整教学方法。
《实际问题与方程》教学反思2
列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,运用所学的知识去解决实际生活中的问题的过程。经过第一课时的教学后,我发现大部分学生摆脱了格式上的困扰,新表现出来的列方程解决简单实际问题的难点是:根据实际问题找出等量关系式,再根据等量关系列出方程。因此我们又上了一节巩固练习课,帮助学生汇总、整理自己脑中千头万绪的“等量关系”:
首先,我们可以根据常用的数量关系确定等量关系。例如:一辆汽车每小时行70千米,多少小时能行560千米?这道题中蕴藏的是我们常用的数量关系,列出等量关系式:速度×时间=路程,路程÷时间=速度,由此可以列出方程:70X=560,560÷X=70
其次,我们还可以根据常见的公式确定等量关系。例如:一块长方形的地长32米,面积是800平方米,它的宽是多少米?这就用到了我们的长方形面积公式,可以列出等量关系式:长×宽=面积,面积÷宽=长由此可列出方程:32X=800,800÷X=32
最后,如果我们实在没有现成的数量关系去用,还可以根据题目中有比较意义的关键句确定等量关系。如:小华有邮票45枚,小华的邮票数比东东多5枚,东东有多少枚邮票?我们先找出题目中有比较意义的关键句:小华比东东多5枚,那么在东东的基础上再加6枚就是小华的'邮票数,由此的到等量关系:东东的邮票数+5=小华的邮票数,列出方程:X+5=45。
数学题一道题可以变化出许多道题,我们每一道题都去做,是做不完的,效果也不一定好。所以我认为数学老师有一项很重要的任务就是,帮助学生整理头脑中的千头万绪,找出其中的关键点和共同的地方,能举一反三,这样我们的学习才能轻松起来。
《实际问题与方程》教学反思3
这节课主要让学生理解并掌握如何利用一元一次方程解应用题,将实际问题转化为数学问题,找等量关系,设合理的未知数,解决实际应用!
这节课的设置是由带学生参观动物园这一条主线,通过利用一元一次方程解决在参观过程中遇到的一些实际问题,如出发时的租车问题,到动物园要买票问题,以及到动物园以后遇到的一些问题等,都可以紧紧带着学生的思绪通过边游览边进行数学知识的学习,让学生深刻体会到数学与实际紧密性,从而增加学生学习数学的兴趣。
教学中要突出实际问题想数学问题的转化过程,关键是找等量关系,以及设未知数列方程,类比以前学过的列方程求解的知识,让学生自己通过探究、讨论找等量关系,以及设合适的未知数,进而列出一元一次方程对问题进行求解,通过学生展示探究结果,老师作简单总结点评,让学生体会数学的`实用性。
在教学过程中有一些学生不能抓住题目给的已知条件找出等量关系,列出的方程不对,应正确引导学生如何将实际问题转化为数学问题、找等量关系,把文字术语转化成数学式子,列出正确的一元一次方程。
《实际问题与方程》教学反思4
本节公开课内容是一元一次方程的应用(工程与配套问题)。教学目标是会通过列方程解决“配套问题”和“工程问题”。教学的重、难点是能准确分析实际问题中的数量关系和等量关系,掌握列方程解决实际问题的一般步骤,现将本节课的得失总结如下:
一、在教学设计上我通过两方面来突破重、难点:
1、设计简单而对本节课有启发作用的前置作业让学生提前完成,使学生在上课前对要学的知识有一个初步的认识。
2、利用列表分析的方法,形象直观地把已知和未知的条件找出来,有利学生分析理解和找等量关系。
二、在教学过程中我采用小组交流与合作的模式:
1、小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的'参与情况。这样有利发现问题,培养学生勇气、才能和个性,使学生思维更清晰。
2、组外的交流,如果整个组的同学都完成老师布置的任务,则可以作为外援到其他组进行帮教,并利用加分的评价机制进行激励。通过这样的教学环节,既能对后进生进行帮扶,也能引领和鼓舞优生的学习积极性。这节课课堂学习气氛浓厚,讨论热烈,思维完全放开,有见地的结论不断涌现,达到了预期的教学目标。
三、课堂应注意改进的方面有:
1、把应用题的等量关系写出来不利于学生的思维发展,可以改成填空的形式。
2、课堂容量不足,应把重点放在找等量关系和列方程上,解方程部分可省略,这样就可以增加题量。
3、如果能把工作量变式为分数,能提升学生对工程问题的理解。
4、提出问题以后,一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。以上都是有待改进地方。
《实际问题与方程》教学反思5
本节内容是实际问题中的打折销售问题,前面已经学习过销售问题中相关量的数量关系及简单的换算,所以本节课内容在知识结构上难度不是很大,但是由于他和实际问题联系密切,学生必须有这方面的生活经验才能达到最好的效果,但是学生年龄小,加上他们缺少生活经验,所以必须在教师的引导下才能更好的去探究。通过本课的教学,我感到成功的地方有以下几个方面:
1、创设问题情境,联系生活实际,激发学习动机,将学生置于问题情景中。比如在引课的`时候,通过各种打折甩卖的广告语引出问题:(1)商家把商品打折卖给我们会不会真的赔钱?(2)其中蕴涵着那些数学道理?这样将学生放在具体的问题中,可以激发他们对问题的一种好奇心,也能使学生明确本课的学习方向,以最佳状态投入到学习中去。
2、充分发挥学生的主体作用,让学生自觉参与到课堂中来。
本节课的所有题目均由学生自主探究,通过合作独立的写出解题过程。让学生口述表达或板书,创造机会,鼓励学生动手动口,以达到教学要求并借助多媒体展示来指导学生,促进思维能力的发展,最后再指导学生用简练的语言概括教学问题。增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题,学会能从不同的角度去探求生活经验从而让学生掌握知识。
3、探究方式灵活,以培养学生的创新精神,探究性学习关注的不仅是探究成果的大小,而是注重探究过程和方法。在探究的时候,适当掌握时间,能根据学生的探究情况及时引导。从而达到最优的探究效果。
从以上情况我认为在教学中, 一定要注重学生积极性的调动。帮助学生设计恰当的学习活动,营造宽松和谐的学习氛围。教师注重开发生活中蕴含的各种教育因素,使学生感到学习的必要性和趣味性,能更好调动学生投入到自主探究的学习活动中去。当然本课还存在很多的不足,我认为主要有以下方面:
1、探究的时间还需要考证,时间不易过长,应合理分配。
2、有些题目原计划是不在数码展台上展示。有的题让学生板书并讲解,想法很好,但是实际操作起来学生占用的时间太长。
3、最后学生自己编了一些实际的应用题,计划让学生自己上台去表演,把问题体现出来,但是由于时间的关系,所以本节课最精彩的最能掀起高潮的环节没有展示出来。
针对以上的问题,在今后的教学中应该注意以下几个问题:
1、加强课堂教学的驾驭能力,要充分安排时间,有紧有松。
2、多给学生的语言表达的机会,即时表扬和鼓励。
3、多结合生活实际,使学生能置身于问题当中,充分调动学习兴趣。
《实际问题与方程》教学反思6
问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的.题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:
1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?
(学生很自然列方程解决)
改换题目条件和问题:
2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?
分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。
于是学生很容易完成下列求解。
解:设该商品定价为x元时,可获得利润为y元
依题意得:y=(x-40)?〔300-10(x-60)〕
=-10x2+1300x-36000
=-10(x-65)2+6250300-10(x-60)≥0
当x=65时,函数有最大值。得x≤90
(40≤x≤90)
即该商品定价65元时,可获得最大利润。
增加难度,即原例题
3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。
《实际问题与方程》教学反思7
教学目标
知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。
过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。
情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。
重点:把实际问题转化为数学问题,不仅会列方程求出问题的.解,还会进行推理判断。
难点:把数学问题转化为数学问题。
关键:从积分表中找出等量关系。
教具:投影仪。
教法:探究、讨论、启发式教学。
教学过程
一、创设问题情境
用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)
二、引入课题
教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:① 用式子表示总积分能与胜、负场数之间的数量关系;
②某队的胜场总分能等于它的负场总积分么?
学生充分思考、合作交流,然后教师引导学生分析。
师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?
生:从最下面一行可以发现,负一场积1分。
师:胜一场呢?
生:2分(有的用算术法、有的用方程各抒己见)
师:若一个队胜a场,负多少场,又怎样积分?
生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.
师:问题②如何解决?
学生通过计算各队胜、负总分得出结论:不等。
师:你能用方程说明上述结论么?
生:老师,没有等量关系。
师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?
生:老师,能不能试着让它们相等?
师:伟大的发明都是在尝试中进行的,试试?
生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)
师:x表示什么?可以是分数么?由此你的出什么结论?
生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。
师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。
拓展
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。
教师引导学生设未知数,列方程。学生试说。
生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。
三、巩固练习
已知某山区的平均气温与该山的海拔高度的关系见表:
海拔高度(单位:m)
100
200
300
400
平均气温(单位:℃)
22
21.5
21
20.5
20
若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?
学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。
四、课堂小结:
让几个学生谈自己的收获,再让一个学生全面总结。
五、布置作业:
课本108页8、9题。
六、教学反思
本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。
由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。
《实际问题与方程》教学反思8
《实际问题与方程》教学反思本节课教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例3若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
1、从学生喜闻乐见的`事物入手,降低问题的难度。解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的足球入手,引出数学问题,激发学生的学习数学的兴趣,建立学生热爱体育运动的良好情感,又为学习新知识做了很多的铺垫。
2、放手让学生思考、解答,选择解题最佳方案。让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后我让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
3、教会学生学习方法,比教会知识更重要。应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,我敢于大胆放手,让学生观察图画,了解画面信息,,然后指导学生根据图意,分析数量之间的关系,讨论交流解决问题的方法,让学生成为学习的主人,参与到教学的全过程中去。
《实际问题与方程》教学反思9
用方程解决问题的关键是找到题目中的等量关系,而对于班级中理解能力一直较差的那部分学生来说确实是一大挑战,学生又是刚接触用方程来解决问题,虽然连着几个课时的学习与练习,解题步骤与规范的书写都有了极大的改观,但分析题意、找等量关系还是个尚需努力提升的大问题。于是,这几个课时的例题我都处理得很慢,先把前一节课学生在作业中出现的易错点、薄弱环节作简要的补充复习,再设计一些较简单的题目为新知的学习创设一个奠基与梯子,让他们的思路更顺一些。
比如说今天的这堂课,我参照教参建议,将本节课的例题以三个层次呈现:
一、数学源于生活又用于生活,比如说今天我们去市场买水果,(出示苹果和梨子的图片),该付多少钱的问题?你们能列出等量关系式吗?大多数学生们快速准确地说出:苹果的总价+梨的总价=要付的水果总价。这个简单的等量关系式将是今天解决问题的重要依据,看似简单,但进入方程解决问题中,那些学习有困难的学生便慌了阵脚,不知如何下手,所以今天我们先来一些铺垫,让他们的思想少走弯路。接着,孩子们的思维打开了,补充了苹果的总价和梨的总价分别怎么计算,还主动向老师寻求条件来解决问题。这个主动解决问题的意识是好的开端;
二、在解决基础题:已知苹果、梨的单价、数量,求出总价后,将条件与问题调整,已知苹果、梨的数量、梨的单价、要付的.总钱数,求苹果的单价。题目一出,孩子们自信满满:“这两题都是一样的呀!”“一样中还有不一样,细心的同学一定会发现并解决它!”对呀,这两题的等量关系是一样的,数据是一样的,但要求的问题却不一样了,这道题用方程怎么解决?学生们主动拿起笔,回忆上节课所学所内容后开始解决问题:
1、解:设未知数;
2、根据第一个环节中的等量关系列出方程;
他们都习惯了捉笔便完整答题,这种急切、主动的学习态度令我满意。不过,课堂上我们可以轻松一些,暂时休息一下,让我们来个解方程男女生P赛。古灵精怪的他们为对方选取了他们认为实力不太强的选手,其实不然,同学们都很有集体荣誉感,乐于参与、自信满满。而台下的孩子们则比台上的更是激动,在心里为同伴呐喊加油。“有些同学不仅在观战,还在看他们写得怎么样,还在思考、可能等下还有评价!”这时,原本有些躁动的课堂安静了,一个个手举了起来。他们的评价动听、到位、详细,也让参与者乐意接受。
三、老师就是个“变题龙”,总喜欢把一道题变来变去。瞧!我把其中的一个数字改了,方法还是一样吗?把3千克梨变成“2千克梨”了。学生们纷纷点头,我顺着他们的意思将黑板上方程中的3改成了2,改好后转过身看看满脸挂着自信与成功喜悦的娃娃们。不!有人摇头了,还有人兴奋地举手了,静静地等待后有人有思考了!还有人没忍住说出了“乘法分配律”。我依旧选择了一个一直保持端正坐姿的孩子,并告诉大家我选她的理由,新一道方程便出来了,“能看懂吗?”其实这两道方程是一样的;其实这是乘法分配律。“这条算式中的每个数表示什么?每一步求的是什么?”依次解读后再来场解方程赛,这次让我们一起动手算,动静结合也让你们不觉得重复吧。
三个环节,孩子们始终投入,而我也觉得欣慰,这样的学习状态挺好!你们今天在数学课堂上的表现我很满意,进步喜人!不过练习的时间却已不太多了。课堂时间有限,我们终有取舍,重了分析与理解的铺设,可能尾就略草了,有一些遗憾也好,说明我们还有进步的空间!希望这样的学习能让你们有收获!
《实际问题与方程》教学反思10
本节内容是实际问题中的打折销售问题,前面已经学习过销售问题中相关量的数量关系及简单的换算,所以本课内容在知识结构上难度不是很大,但是由于他和实际问题联系密切,学生必须有这方面的生活经验才能达到最好的效果,但是学生年龄小,加上他们缺少生活经验,所以必须在教师的引导下才能更好的去探究。
我们七年级数学研究的课题是如何培养学生的自主探究学习的能力,探究性学习不仅是知识的构建与运用、技能的形成与巩固,也包含了生活经验的激活丰富与提升,学习策略的完善,情感的丰富和价值观的形成。在本次教学中我能以学生为主体,以探究为主线,采取合作交流的探究式进行学习,课堂上学生积极主动,不断出现学习的欲望和热情,使学生的知识得到巩固的同时使生活经验、学习方法等得到提高也形成正确的价值观。通过本课的教学,我感到成功的地方有以下几个方面:
1、创设问题情境,联系生活实际,激发学习动机,将学生置于问题情景中。比如在引课的时候,通过各种打折甩卖的广告语,引出问题:
(1)商家把商品打折卖给我们会不会真的赔钱?
(2)其中蕴涵着那些数学道理?这样将学生放在具体的问题中,可以激发他们对问题的一种好奇心,也能使学生明确本课的学习方向,以最佳状态投入到学习中去。
在解决问题1中,我也是创设了几个问题情境,比如以黑板擦为例,问5元卖的黑板擦,想知道是赔钱还是赚钱,应该关注什么?而题中缺少什么量?怎样求?如何比较?结果如何?启发学生积极思考,让这些连续的阶段性问题持续的激发学生的学习热情和探究知识的兴趣,促使学习达到最佳境界,对于后面的问题和习题我都采用了同样的处理方式。
2、充分发挥学生的主体作用,让学生自觉参与到课堂中来。
本节课的所有题目均由学生自主探究,通过合作独立的写出解题过程。让学生口语表达或板书,创造机会,鼓励学生动手动口,以达到教学要求并借助多媒体展示来指导学生,促进思维能力的发展,最后再指导学生用简练的语言概括教学问题。增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题学会能在不同的角度去探求生活经验从而让学生掌握知识的同时使思想水7和情感态度价值观都得到提高。
3、探究方式灵活,以培养学生的创新精神,探究性学习关注的不仅是探究成果的大小,而是注重探究过程和方法。在探究的时候,适当掌握时间,能根据学生的探究情况及时引导。从而达到最优的探究效果。
从以上情况我认为在教学中,一定要注重学生积极性的调动。帮助学生装设计恰当的学习活动。让他们发现所学东西的个人意义,营造宽松和谐的.学习氛围。教师注重开发生活中蕴含的各种教育因素。使学生感到学习的必要性和趣味性,能更好调动学生投入到自主探究的学习活动中去。当然本课还存在很多的不足,我认为在以下方面。
1、探究的时间还需要考证,时间不易过长,应合理分配。
2、有些题目原计划是有的不在展示台展示。有的学生板书并讲解但展台接触不好改用让学生讲解由于感觉时间不是所以取消。
3、最后学生自己编了一些实际的应用题,计划让学生自己上台去表演,把问题体现出来,但是由于时间的关系,所以本课最精彩的最能掀起高潮的环节没有展示出来。
针对以上的问题,在今后的教学中应该注意以下几个问题:
1、加强课堂教学的驾驭能力,要充分安排时间,有紧有松。
2、多给学生的语言表达的机会,即时表扬和鼓励。
3、多结合生活实际,使学生能置身于问题当中,充分调动学习兴趣。
《实际问题与方程》教学反思11
1. 教学计划中,原是考虑把探究1和探究2作为一个课时的,但是在学习了探究1后,发现我们的学生对应用题的解题分析,依然是个难点,很多同学分析题意不清,也有不少同学解方程需要花大量的时间,而这类“平均变化率”的问题联系生活又非常密切,是一元二次方程在生活中最典型的应用,考虑到学生的实际情况和教学内容的重要性,决定把探究2问题作为一个课时来探究。
2、在教法、学法上我采用“探索、归纳与合作交流”相结合的方法,采用尝试法、讨论法、先学后教引导式讲授法等方法培养学生自主学习,合作交流的学习习惯。让学生在自主探究合作交流中加深理解,分析实际问题中的数量关系,不但让学生“学会”还要让学生“会学”
3、以导学案的形式,创设由特殊性到一般性的实际问题为情境,让学生感受知识在生活中的应用,习题紧扣生活,难度不大,增加学生的自信及探究的积极性。通过学生讨论交流,归纳出一般的规律。
4、学生通过由特殊到一般的实际问题的探究后,及时让学生归纳,形成知识与方法。
5、鼓励学生自主学习,理解教材。采用学案问题设置的方式对问题进行分解,最后师生共同完成。由于是例题,所以注重板书格式。
6、学案的`设置,具有层次性,以问题为主线,引导学生自主探究,小结归纳。有梯度的设置习题,让学生去挑战中考题,感受中考的难度,体会成功的喜悦。并且注重问题及考察需要,体现先学后教、合作探究,自主学习的课改精神。
7、在时间的安排上,教学环节(一)、(二)部分计划让学生展示后简单点评,但是考虑到学生的实际情况和学生知识的形成过程,不光是要结果,囫囵吞枣,所以做了详细的推导,用了不少的时间,这样导致了教学程序的不完整,挑战中考题没能在课堂上完成。环节(一)、(二)的习题设置有点多和重复,使得环节(五)中的综合练习没有在课堂中探究和展示,所以在习题的选择上还要多加精选,力求做到精选精炼。
8、生生交流活动少,学生大多数都是各自为阵,没有发挥小组的作用,在教学环节(三)的自主学习中,如果能发挥小组的带动作用,充分调动学生的能动性,真正发挥学生的主体地位,我想会更好一些,在引导学生讨论上做得不够,不能兼顾全体。
《实际问题与方程》教学反思12
前言:
列方程解应用题是学生的一个困难问题。大部分学生见到字多的题目就会大脑一片空白。这种不良反应很可能会延续到函数的实际应用。这个方面的教学反思是很有必要及迫切需要的。
笔者从事教学12年来,一直在反思应用题对于学生的困难之处。开始的时候,总是觉得原因在于学生文字理解能力差,看不懂题目。其实,这和语文的文字理解能力关系不大,主要是和学生对题中的数量关系的理解有关。
一、一元一次方程实际应用困难
先举一个学生觉得很容易的例子:
例1、一个修路工程队已完成1700米的任务,预计每天修150米,还需多少天能完成2450米的总任务?
这个问题为什么简单?因为学生对每天修150米,x天修150x米这种倍数关系理解了,等量关系“已完成+预计完成=总任务”就好找了。
再举一个学生觉得有点困难的例子:
例2、小明有5角硬币和1元硬币共50枚,其中5角硬币比1元硬币的2倍多5枚。小明的两种硬币各有多少枚?他共有多少元钱?
学生易犯的设未知数的错误是:设两种硬币各有x枚。第二个错误是:设5角硬币有x枚,1元硬币有(2x+5)枚。如果解设对了,一般都不会列错方程。 这个题目绝对不存在阅读理解的困难,背景是学生很熟悉的。在教学中发现,几乎没有学生主动“设5角的硬币有x枚,则1元的硬币有(50-x)枚”。部分接受能力强的学生对这种设法接受很快,还有一小部分学生(学习态度较好)就不能接受。
我们再仔细想想,其实“设5角的硬币有x枚,则1元的硬币有(50-x)枚”所涉及数学思想与列一次函数关系式是很相似的,所以部分学生觉得有难度。倍
数关系很直接,学生易接受;这个关系用到一次逆向思维(加数=和–加数),所以难接受。
这个难点可以用列举表格的方法来解决:
这样,数量间的关系就很清晰的展示出来了。其实,在学习代数式时,学过用字母表示数,可是学生思维没有把两个知识点联系起来。
很多参考书都是这样总结列一元一次方程解应用题的'一般步骤的。
第一步:审题,用一个字母如x表示题目的未知数;
第二步:找出一个相等关系式;
第三步:根据等量关系列出一元一次方程;
第四步:解这个方程,求出未知数的值;
第五步:检验,作答。
结合学生觉得困难的例2分析一下,第一步就不好办了,因为有两个未知量,却只能设一个未知数;第二步找一个相等关系,其实题中有两个相等关系。有些困难学生,第一个步骤都不能顺利完成,所以觉得难!虽然老师们都觉得这是个超级简单的题,它确实难住了一些学习态度较好的学生。老师的工作就是帮学生解决困难,我们需要学着学生的思维方式去理解他们。
二、二元一次方程组的实际应用困难
二元一次方程组的有关应用题在解设上没有什么困难,找相等关系列方程还是有很大困难。
也举个例子:
例3、2台大收割机和5台小收割机均工作2小时共收割小麦3.2公顷,3台大收割机和2台小收割机均工作5小时共收割6.5公顷。1台大收割机和1台小收割机每小时各收割小麦多少公顷?
这个题目已知数据很多,部分学生望而生畏。列出的方程常常丢三拉四。
参考书常这样总结列二元一次方程解应用题的一般步骤的。
第一步:认真审题,找出已知量、未知量(两个)以及等量关系(两个); 第二步:设未知量x,y;
第三步:根据等量关系(两个)列二元一次方程组;
第四步:解二元一次方程组;
第五步:检验,作答.
结合例3,分析一下学生觉得困难的地方。第一步,找出已知量、未知量容易,但找两个等量关系就不那么容易了。找不到等量关系,题就做不下去了。 我们可以发现,学生都是被“等量关系”难住的。不管设一个未知数也好,设两个未知数也好,只要找不到等量关系,方程就列不出来。
这个“害人”的等量关系还有一个致命伤——要用文字描述。以例3为例,请老师们自己把“等量关系”准确的表述一下,你会发现,几乎就是把题目重复了一遍。我们自己做这题,只会关注两个“共”字,不会把等量关系详细写出来。那为什么要学生去写或说呢?
反思,“等量关系”地位重要,但是它是否必须在第一时间出现呢?
三、两种讲解对比
以例3为例,对比“等量关系”在前和“等量关系”在后两种讲解方法。
例3、2台大收割机和5台小收割机均工作2小时共收割小麦3.2公顷,3台大收割机和2台小收割机均工作5小时共收割6.5公顷。1台大收割机和1台小收割机每小时各收割小麦多少公顷?
(一)“等量关系”在前
第一步:解:设1台大收割机和1台小收割机每小时各收割小麦x、y公顷,得: 第二步:找出相等关系: 大收割机工作量+小收割机工作量=总工作量 是不时所有学生都能准确找到这个等量关系能?
?2?2x?2?5y?3.2第三步:列出方程:? 5?3x?5?2y?6.5?
第四步:解出方程
第五步:检验,答
(二)“等量关系”在后
第一步:找出已知数据,建议学生在数据上作好标记(如圆圈)。
第二步:解:设1台大收割机和1台小收割机每小时各收割小麦x、y公顷,得: 第三步:分析每个已知数据和未知数的数量关系,顺序是从前往后。
如,看到第一个数据“2台”,想想它和x还是y有关系,它们之间存在那
种运算关系?学生很快会想到2x,接下来就是5y,这两个式子就是方程的雏形,再考虑2小时和3.2公顷,方程很容易就出来了:2(2x+5y)=3.2. 第四步:反思题中的“等量关系”
第五步:解出方程
第六步:检验,答
两种方法对比:
第一种方法,学生容易在第二步受困;
第二种方法把找“等量关系”分解为找“数量关系”,学生不那么容易受困;
第一种方法要求学生用文字描述“等量关系”,学生会觉得困难;
第二种方法在找数量关系的过程中,自觉地把等量关系用数学式子(方程)描述好了,学生不会觉得太困难;最后反思“等量关系”,加深对题目的理解。
四、“等量关系”在后的解题步骤反思
“等量关系”在后的列方程解实际问题的步骤:
第一步:认真读题,找出已知量与未知量;
第二步:正确设好未知数;
第三步:按顺序初步分析各个已知量与有关未知数的关系;
第四步:在初步分析的数量关系之间找到等量关系,列出方程(组)并反思等量关系的文字描述;
第五步:解方程(组);
第六步:检验,答。
这样的步骤,把找“等量关系”细化为找“数量关系”,按照已知数据出现的顺序,一个一个分析,把文字理解和数量关系紧密结合在一起。这样的步骤对列一元一次方程和列二元一次方程组都合适。这与波利亚的怎样解题表的思路是一致的。
笔者的教学感受是,“等量关系”在后的方式比较适合中等以下层次的学生。在反复强调这样的步骤后,学生就从不能动手,到动手画圈,再到设好未知数;动手之后,就开始思考,从列一半式子到列出方程。
希望本文能起到抛砖引玉的作用,引起更多的老师来反思实际应用类的教学策略,研究出一些实用的方法。
《实际问题与方程》教学反思13
在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。这一节共安排了五个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些。这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。
教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。基于以上原因,这节课的设计我选择了“学案导学”法,就是是以学案为载体,导学为方法的教学活动,其显著优点是发挥学生的.主体作用,突出学生的自学行为,倡导学生自主学习,自主探索,自我发现,是学生学会学习,学会合作的有效途径。其操作要领主要表现为问题教学、导学导练、当堂达标。体现学案的人文性:名人名言、建议的口气、温馨的提示等等,我想这些对于创设民主、和谐的课堂氛围,激发学生探究的积极性都是十分必要的。
这节课之后,我感觉目标已经达成,但还要做好以下几点:
1、
2、
3、
4、
5、
6、
7、
将问题精细化处理,设计好问题分析 在课堂上多进行激励和评价,对学生具有积极的指导作用 注重细节,提高解题正确率 关顾不同阶层的学生,提高学生整体的学习水平 做好板书设计,给学生做题留出充足的空间 培养学生良好的思维习惯,提高分析问题的能力 加强教师的专业学习,储备好丰厚的知识
《实际问题与方程》教学反思14
调配问题中既有劳力调配问题,又有事物调配的.问题,且这类问题的应用较广泛。由于这类问题都可用二元一次方程组来求解,因此较复杂的应用题应放到二元一次方程组的章节中去处理.基于上述原因,本教学过程设计时所安排的例题、练习题、及作业题均以用一元一次方程解决较简单为标准。
《实际问题与方程》教学反思15
本周进行了实际问题与一元一次方程教学,球赛积分问题,尽管在课前与学生体会了一下赛事得分问题,但是在上课时学生仍感到茫然,农村孩子几乎与各类体育项目绝缘了,没有什么机会去接触篮球足球,各种规则仅仅就是从电视上了解,知道得不多,我让学生对问题进行讨论时,学生半天理不出头绪,头脑里难以呈现比赛场面,就更别提常用规则了,没办法,我只好先给学生描述了一下,简单介绍规则后,再引导学生结合本题进行了分析,正确建立数学模型,学生之间的探究讨论就没有充分进行。
课后,我反思我的教学,在教学时学生没有体验无法感知问题,作为教师一定要发扬民主,真正做好教学的.组织与引导,鼓励学生大胆想象,质疑,并尽可能的提供丰富多彩的学习素材。比如本节课如果先与体育课联系进行提前渗透,就会节省很多的介绍规则时间,讨论会更充分,效率会更高,才能从根本上帮助学生。
我们现在正在进行数学课堂生生互动教学策略的研究,学生的学习内容应该是现实的、有意义、富有挑战性的,这对教师也是一个挑战,如何为学生的互动创造条件,是我们在备课时要提前设想的。
【《实际问题与方程》教学反思】相关文章:
《实际问题与方程》教学反思汇编15篇09-22
《方程》教学反思08-30
方程教学反思09-02
方程意义教学反思07-30
解方程教学反思08-04
方程的解教学反思07-10
《方程的意义》教学反思[精选]07-07
方程的意义教学反思01-15
方程的解教学反思(精选)09-09
方程的意义的教学反思12-22