当前位置:9136范文网>教育范文>教学反思>运算律教学反思

运算律教学反思

时间:2024-09-20 14:30:24 教学反思 我要投稿

运算律教学反思

  作为一名到岗不久的老师,我们要有一流的课堂教学能力,写教学反思能总结教学过程中的很多讲课技巧,教学反思应该怎么写才好呢?下面是小编收集整理的运算律教学反思,仅供参考,希望能够帮助到大家。

运算律教学反思

运算律教学反思1

  本节课主要内容是加法的交换律和结合律,并且孩子们刚学完四则运算,对四则运算已有较多感性认识。本节课我是以孩子们最熟悉的体育大课堂中的体育活动为情境引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。

  1.提供自主探索的机会

  本节课以学生身边熟悉的情境为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己提问题,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提国自主探索的时间和空间,使学生经理加法运算率产生的形成的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

  2.关注学生已有的知识经验。

  在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。

  3.引导学生在体验中感悟数学

  教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的`乐趣。 不足之处:

  1. 在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。

  2. 安排这两个运算律教学时采用的都是不完全归纳推理,因此在教学加法结合律时也应该让学生多举些列子,让学生去评价举的列子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。

运算律教学反思2

  这个星期和学生一起学习了乘法运算定律。乘法运算定律包括乘法交换律、乘法结合律。

  学生对于加法运算定律和乘法的交换律掌握较好,然而对于乘法结合律则运用得很糟糕。

  细想有以下几个原因:

  第一,学生现在只是能够初步认识,就算弄明白这几个运算定律,还不明白这几个运算定律的作用和意义。

  第二,学生不能正确的分析算式并正确的运用运算定律,如遇到25× 16就不知道如何计算,有时会把16分成10×6,有时会写成25×10+6 ,针对上述情况还需对学生加强算理、算法的理解,要在学生的脑海中渗透“凑整”的思想

  第三,对于有些算式,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。

  综上所述,学生并没有深刻体会到运算定律带来的`方便,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。等接触的题目类型多了,我想学生会得到一个明确地感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。

运算律教学反思3

  以学生身边熟悉的课间活动:跳绳、踢毽子为教学的切入点,收集信息,提出数学问题。在解决问题时,针对同一问题列出两个不同的算式,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提供自主探索的.时间和空间,让他们在合作交流中经历加法运算律产生的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。主要是渗透“观察猜想——举例验证——得出结论”这一学习方法,这其中要注意方法的科学性,因为学生往往只通过一个例子就轻率的得出规律,这时教师就应该引导学生本着严谨科学的学习态度,只有通过大量的举例验证,得出规律,体验不完全归纳的数学方法。到了加法结合律就让学生尝试运用这种方法自己去探索规律了。由于加法结合律是本课教学难点。教学中老师安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你发现了些什么”引发学生由三个例子的共同特征联想到是否具有普遍性。从而得到猜想:是不是所有的三个数相加都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。

运算律教学反思4

  教学目标:

  1。使学生经历探索加法运算律的过程,理解并掌握加法的交换律和结合律,初步感知加法运算律的价值,发展应用意识。

  2。使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,培养归纳、推理的能力,逐步提高抽象思维的水平。

  3。使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

  教学重点:

  让学生在探索中经历运算律的发现过程,理解不同算式的相等关系,概括运算律。

  教学难点:

  概括运算律并会运用。

  教学过程:

  一、创设情境,大胆猜想

  师:为了欢迎听课的老师,咱们班同学准备了几束鲜花。

  出示图:左边有5束鲜花,右边有4束鲜花,一共有几束鲜花?怎样列式?

  生:5+4=9,4+5=9。(师板书:5+4○4+5)

  师(小结):这两个算式结果相等,我们就可以用等号把它们连接,变成一个等式。这个等式里蕴藏着我们今天要探索的规律,猜一猜,是什

  么?是不是所有像这样的加法算式都有这样的规律呢?今天我们继续探究。

  二、自主探索,学习新知

  (一)教学加法交换律

  1。出示情境图:体育课,同学们正在操场上做运动。

  师:从图中你了解到哪些数学信息?你能提出一些用加法解决的问题吗?

  生1:跳绳的有多少人?怎么列式计算?(17+28=45,28+17=45,17+28○28+17)

  生2:女生有多少人呢?(23+17○17+23)

  师:继续观察这两道算式,你发现了什么?中间可以用什么符号连接?

  2。那么,你能再写出几道像这样的等式吗?

  (学生写后,同桌互查,指名交流,师相继板书三道等式) 师:这些都是等式吗?怎样验证?这些等式都有什么特点?

  3。师:像这样的`等式还有很多,咱们能举完吗?(师板书省略号)那么,你能用自己喜欢的方法把自己发现的规律表示出来吗?(学生交流后,再看书自学P56)

  提问:通过学习,你知道可以怎样表示?你觉得哪种表示方法最能体现数学简洁明了的特点?(集体反馈并总结,师板书a+b= b+a) 师:这个等式表示什么?(生交流,师板书加法交换律)

  4。师:其实,加法交换律和我们并不陌生。357+218,你想到了什么?(生交流验算的依据)

  师:那么,你知道为什么调换加数的位置,和不变吗?(看的方向不同,但总数不变)

  (二)教学加法结合律 1。课件出示问题:参加活动的一共有多少人?怎样列式计算?(学生交流,师板书:28+17+23)

  师:先算什么?(根据学生的回答,师添上小括号)还可以先算什么? (生加括号,并说计算过程)

  师:这两道算式结果怎样?可以用什么符号连接?(师板书,生齐读)

  2。算一算,下面的○里能填上等号吗?

  (45+25)+13○45+(25+13) (36+18)+22○36+(18+22)

  3。引导比较,发现规律。

  师:比较这几道等式,你发现每组两个算式有什么异同?(同桌讨论后交流)

  师根据学生回答进一步追问:什么变了?什么不变? (引导学生抓住不变的三层含义分析相同点)

  师(小结):其实三个数相加,改变运算顺序,和不变。

  【评析:加法结合律的内容,学生在以往的学习中接触不多,没有太多的感性基础,尽管凭直觉知道左右两边算式结果相等,但对左右两边算式的异同点表述并不是很清楚。这就要求教师要做到心中有数,引导学生

  从变与不变的角度去分析。只有层层剥笋,使学生抓住了加法结合律的本质特征,这样在后面的运算律混合练习中才不会混淆不清。】

  4。你能照样子再写一道这样的算式吗?

  师:既然这样的等式写不完,那么也可以用字母等式来表示这样的规律。如果用字母a、b、c表示三个加数,你能表示出这个规律吗?(学生独立写一写,然后指名板演,师生一起检查这个等式)

  师(小结):三个数连加,先把前两个数相加或先把后两个数相加,再与另一个数相加,和不变。这就是加法结合律。(板书课题)

  5。学习加法结合律又有什么用呢?(出示如下题目)你能很快口算吗?运用了什么?(学生说口算过程,体会加法结合律的用处) 35+40+60 64+(36+78)18+25+75

  【评析:学以致用。如果在学习之后不能使学生很快尝到“甜头”,学生则从心理上就不会完全将新知内化。所以通过快速口算,让学生省略书写过程,只从形式上去感受运用加法结合律带来的好处,强化学习运算律的目标意识。】

  三、巩固练习,深化新知

  师:今天我们学习了什么?有没有信心接受挑战?

  1。下面的等式各用了什么运算律?

  ①82+0=0+82;

  ②47+(30+8)=(47+30)+8;

  ③(84+68)+32=84+(68+32);

  ④75+(48+25)=(75+25)+48。

  2。你能在□里填上合适的数吗?说说你是依据什么填的。 ①6+35=35+□;

  ②a+204=□+a;

  ③(45+36)+64=45+(□+□);

  ④560+(40+c)=(560+□)+ □;

  ⑤560+(180+440)=(560+ □)+□。

  3。完成课本P58第五题,学生独立完成后指名口答。

  4。拓展练习。(挑战题)

  ①64+25+136+75=(64+□)+(25+□);

  ②30+28+70+72=(□+□)+(□+□);

  ③5×4=4×□;

  ④6×4×25=6×(□×□)。

  师:加法交换律、结合律对四个数相加、五个数相加适用吗?更多数相加呢?由加法交换律、加法结合律你还能联想到什么?乘法是否也具有这样的运算律?大家的猜想对不对呢?你们课后能像这节课一样去探究验证一下吗?

  【评析:练习设计既重视基本知识的训练,又能充分挖掘习题的功能,及时进行拓展训练,培养不同层次学生的思维水平。特别是最后两道乘法式题的练习,引导学生在学习加法运算律基础上去猜想乘法是否也具有这样的运算律,为学生沟通了知识之间的联系,实现了学生思维的可持性发展。】

  四、全课小结

运算律教学反思5

  教学目标:

  1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握乘法交换律和乘法结合律,并能应用这两个乘法运算律进行一些简便运算。

  2、在学习新知的过程中,培养学生新旧知识间的迁移能力,灵活选择和应用乘法交换律和乘法结合律。

  3、培养学生良好的学习习惯。

  教学重点:

  理解并掌握乘法运算律,能合理应用乘法运算律进行简便计算。

  教学难点:

  灵活选择和应用乘法交换律和乘法结合律,正确计算。

  教学过程:

  一、复习旧知

  1、谈话:加法中有哪些运算律?请举例。

  (加法交换律、加法结合律)

  2、猜想新知:你认为乘法中是否也有类似的定律?

  (学生发表自己的想法)

  二、自主探究

  1、出示挂图

  说说题目的条件和问题分别是什么?列式计算。

  5×33×5

  观察这两道算式,你发现什么?

  用等号将这两道算式连起来。

  学生举例。

  2、给这种运算律取名,并相互用语言表述这种运算律。

  3、集体取名,并交流运算律的内容。

  4、用字母表示这种运算律。

  5、练习

  15×6=6×( ) ( )×46=( )×54

  □×○=( )×( ) a×8=8×( )

  6、自学乘法结合律

  7、集体交流自学情况。

  (1)举例

  (2)用字母表示

  (3)用语言表述乘法结合律的内容

  8、完成“试一试”

  三、巩固练习(略)

  四、课堂小结

  五、课堂作业

  教后反思:

  学生在学习了加法加换律和加法结合律的基础上学习乘法的运算律,相对来说比较轻松,因为乘法的运算律和加法的运算律相似,所以这节课我放手让学生自己去探究规律,这样不仅充分激发了学生学习的积极性,而且使学生体会发现新规律的.方法,乘法结合律和乘法加换律相比,用语言完整地表述有一定困难,教师在学生充分交流的基础上帮助学生规范语言,既能使学生获得清晰的认识,又为学生展示自身才能创造了足够的空间。

运算律教学反思6

  这节课是四年级上册第56-57页的内容,是在学生已经掌握了加法计算方法的基础上展开教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,根据学生的认知规律,我坚持以“学生为主体”的理念,力求突出以学生发展为本的教育思想,所以整个教学过程以学生自主学习、自主探索为主,通过学生的观察、验证、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。

  一、创设情境,营造愉悦的氛围,激发兴趣。

  课前的语言游戏,通过“调侃”的语气,营造轻松愉悦的气氛,同时,游戏方式中渗透着加法交换律的外形特点。接着以学生近期所关注的焦点——校运会为切入点,选择几个学生喜闻乐见的活动场景,激发学生的学习热情,为学生的自主探究创设良好的氛围。

  二、让学生经历有效的探索过程。数学学习的过程是一个发现问题、提出关于解决问题的'猜测、尝试解决、验证与修正、形成算法、推广应用的过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“列式猜想——观察发现——举例验证——概括规律”这一数学学习全过程。首先在学生初步认识了28+17=17+28这样的等式以后,引发学生的猜想:是不是其他的两个数相加也有这样的规律呢?让学生写一两个例子并验证,此时再问“像这样的等式你还能写多少个?”学生说“无数个”,唤醒了学生已有的知识经验,使学生初步感知加法运算律。通过四人小组合作探究:说说在写的过程中发现了什么规律?想办法把这个规律表示出来,让学生轻松体会到“两个加数交换位置和不变”这样的规律,学生尝试运用符号、图形、文字和字母等表示规律后,教师再引出简洁的表示方法“a+b=b+a”指出这就是加法交换律,从而发展学生的符号感。在探索加法结合律的过程中,通过引导学生用迁移类推的方法探究加法结合律。在学生动手举例验证后,通过四人小组合作讨论“观察这些等式,你发现了什么规律?”为学生提供自主探索的时间和空间,让学生经历运算律的发现和探索过程,获得成功的体验,增强学生学习数学的信心。

  三、调动学生已有知识的经验,注意数学学习方法的迁移和渗透。

  加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了探究学习的全过程,在此基础上,及时对探究加法交换律的方法做了小结,然后引导学生运用同样的研究方法开展研究加法结合律,利用课件出示探究方法的步骤,通过四人小组合作学习,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。为学生提供足够的自主探索的时间和空间,学生将已有学习方法,迁移类推到探索加法结合律的学习中来,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

  四、教学中注意沟通知识间的联系。

  在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。

  同时,在教学过程中,我也认识到了一些不足之处:

  学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题,引导的不够巧妙,也正是因为这样,耗时比较多,以至后面的练习没能够完成,使得课堂不够自然流畅。

运算律教学反思7

  简便运算是一种高级的混合运算,是混合运算的技巧,学好了简便运算,不仅能提高计算能力、计算速度及正确率,还能使复杂的计算变得简单,也就是变难为易,变繁为简,变慢为快。同时能灵活、合理地运用各种定律、性质、法则等达到融会贯通的境界,是计算题中最能锻炼学生思维能力、开拓学生思路的一种题型。所以,在计算题教学中应重视简便运算,注重简便运算灵活思路的学习,合理地进行简便运算,使学生的思维能力得到提高。五年级的简便运算的教学建立在学生已有对简便运算的认识上。小数乘法简便运算是整数乘法简便运算的延伸。

  这节课我以学生先试后导,先练后讲为主线进行设计,突出学生的主体地位,发挥学生知识迁移能力。学生在整体认知小数乘法简便运算的运算律方面较容易,在计算过程中不少学生忽略了小数点的移动,有以下几点值得反思。

  一、复习题的设计针对性强,为新课学习做好铺垫。

  做好已有知识结构的迁移。在复习时先请两名学生到黑板上做:25×12和 87×46+ 54×87 ,同时其他同学集体练习。指名说说自己是怎样想的,提示学生运用的是哪一个乘法运算定律,实际有学生说第二题用的是乘法结合律,我并没有急于否定学生的答案,而是问学生乘法结合律的字母表达式和乘法分配率的字母表达式,并组织学生进行区别,以便更好的运用这两个定律解题。通过复习使每一个学生进一步明确乘法的运算定律及它们之间的联系与区别,更加清楚如何运用运算定律解题。同时渗透并思考,这些运算定律在小数乘法中能不能用,激发学生对小数乘法的简便运算的猜想和求知的欲望。

  二、新课学习先试后导,善用旧知解疑。

  教师出示例题4后,简单分析题意,学生用自己的'方法解题。

  0.8×1.3○1.3×0.8

  (0.9×0.4)×0.5○0.9×(0.4×0.5 )

  (3.2+2.8)×0.6○3.2×0.6+2.8×0.6

  有学生通过计算两边的算式结果来判断,大多数学生看见算式联想到简便运算来判断,第一种算法确定算式两边结果相等,第二种算法提供了学生思维判断的方法。这样有效地把整数乘法的运算律和小数乘法结合起来,运算方法在小数乘法中一样有效。

  为了学生更好地运用运算律,安排了三题练习题

  0.25×0.7×4、 1.25×2.4 3.2×1.02

  保留了教材中试一试第一题,修改了第二题,增加了第三题题,第一题让学生理解乘法交换律,第二题运用乘法交换律和结合律,第三题是运用乘法分配律。第二题中2.4的分解是教学时一个难点,不少学生着重把24分解成8×4,忽略了小数点,这个环节的处理不够好,未能预料。第三题的教学也是一个难点,不少学生意识不到把1.02分解成1+0.02,只是一味去分解3.2。

  三、巩固练习类型多样,提高学生能力。

  巩固练习的设计除了根据运算定律填空外,还设计了各种类型的简算题,如:12.5×4.8 0.72×101 3.8×9.9 1.01×2.6 0.25×0.125× 0.4×0.8 0.4×8.2×25-0.3

  这些题里有的接近整数、有的超过整数、有的要先转化再做,有的运用乘法结合律做,有的运用乘法分配律做,有的是部分简算,几乎涵盖了所有小数乘法简算的各种类型 ,另外还出现了部分简算的题,这样的题学生掌握的不好, 关键是根据运算定律判断是否能简算。最后是拓展提高,3.67×8.9 + 36.7×0.11 86.9×1.73 + 8.69×7.3 这两道题分别都有两种解法,学生根据刚才做题的经验,分析后很快发现36.7和3.67 、86.9和8.69可以互相转化,怎样才能使转化后的数的积不变,利用积不变的规律就能解决问题。这样提高了学生分析能力和灵活解题的能力。

  不足之处:

  整节课由于课堂密度较大,所以学生说的多,动笔练习较少,使得一部分同学没有掌握简算的方法,尤其是需要转化的题掌握的不好。其次,在新知识的探索阶段,教师给学生的时间较少,使得同学没有充分发表自己的意见,小组内同学之间交流的较少。

运算律教学反思8

  乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

  以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,提出的问题:学校要组织“六一”活动,我们班要出一个节目,现在要买服装,这些服装共要多少钱?通过两种方法和算式的比较,使学生初步感知乘法分配律。先让学生根据提供的问题,用不同的方法解决,让学生观察。在此基础上,让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?继续为学生提供具有挑战性的研究机会:“请你再写出一些这样的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的.特点,验证其内在的规律,从而概括出乘法分配律。

  这样既培养了学生的猜想能力,而且培养学生主动探究、发现知识的能力以及验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。为培养学生数学模型思想,我又让学生试着用字母来表示这个规律,较好的培养了学生的抽象思维能力。对于这个规律,不是仅仅满足于学生理解、掌握乘法结合律,同时注重了对乘法结合律的运用,使学生明白学习规律能给我们带来计算上的方便,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力,激发了学生的数学学习兴趣。

  课堂上我还十分注重合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。课堂上虽然成功引导学生发现了定律,但教完之后,在练习过程中还有部分学生掌握不好, 在下节课练习设计上,我力求有针对性,同时也注意知识的延伸。针对平时学生练习中的错误,在判断题中我安排了(25×9)×4=25×4+9×4,让学生通过争论明白当(25×9)×4时用乘法结合律简算;当(25+9)×4时用乘法分配律简算。在连线题目中,我设计了乘法分配律的扩展型101×58;61×2-31×2;35×16+35×83+35。通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。

运算律教学反思9

  教学内容:加法的交换律和结合律1、教材p56~58例题和想想做做。

  教学目标:

  1、通过观察、比较和分析,归纳出加法交换律和结合律。

  2、在学习过程中,理解并掌握加法交换律和结合律,并会进行运算。

  3、培养学生分析、判断、推理能力,提高学生解决问题的能力。

  教学重点:理解加法交换律、结合律,并能正确运用。

  教学难点:通过观察和分析概括出加法交换律和结合律,并会用字母表示。

  教学准备:课件。

  教学过程:

  一、开门见山,直接导入。

  1、开门见山:今天我们一起来学习“运算律”。

  2、看:(运算)我们学过哪些运算?

  “律”指什么?那今天我们要研究什么?

  3、想想,今天会研究哪一种运算的规律?为什么先研究加法?(一年级先认识加法)从几步计算研究?(一步)

  4、好,我们就从简单的入手,先研究简单的,再研究复杂的,好吗?

  二、创设情境,提出问题。

  (一)、研究加法交换律。

  1、出示书本情境图引入。

  仔细看图,你能提一个最简单的用加法计算的一步问题吗?

  预设:跳绳的有多少人?

  女生有多少人?

  2、解决问题,初步感知。

  怎样列式?

  28+17=45(人)17+28=45(人)

  17+23=40(人)23+17=40(人)

  观察第一组两个算式,你发现什么?引导板书:28+17=17+28

  那第二组两个算式呢?板书:17+23=23+17

  3、引发猜想,举例验证。

  问:是不是所有的两个数相加,交换加数的位置,和都不变呢?

  既然是猜想就需要验证,怎样来验证?(板书:猜想验证)

  请同学们在练习纸上举例验证猜想。学生写等式。然后交流算式,初步感知规律。

  4、观察等式,发现规律。

  问:观察这些等式,说说它们有什么共同特点?

  小结:两个加数相加,交换加数的位置,它们的和不变。

  5、引导学生探索加法交换律的表达方式。

  ①教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。

  汇报:

  预设1:我们用数字(文字)表示

  2:我们用符号表示

  3:我们用字母表示

  ②比较表示的不同方式,提出用字母表示发现的规律比较简洁。

  出示板书:a+b=b+a

  指出:这样的规律就是加法交换律。(板书)

  想一想,以前学习中什么地方用过它?

  引入:简单的研究过了,下面我们要研究稍微复杂一点的,这幅图,你还能提什么问题呢?

  (二)研究加法结合律。

  1、再次出现主题图。

  研究:参加活动的一共有多少人?

  学生列式后,板书等式:(28+17)+23=28+(17+23)

  观察比较上面算式,思考:等式左右两边什么变了?什么没变?

  2、丰富表象,初构规律。

  完成书上的.两组算式,再次比较等式左右两边的“变”与“不变。

  问:你发现了什么?

  3、举例验证,确认规律。

  学生小组合作,进一步举例验证规律。

  三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再同第一个数相加,它们的和不变。

  得出加法结合律,尝试用字母表示:板书(a+b)+c=a+(b+c)

  (三)比较两种运算律的异同。

  说说两种运算律不同点是什么?相同点是什么?

  三、巩固练习,拓展延伸。

  1、完成第2题,重点让学生说说后面两题两个数结合了有什么好处。

  2、完成“想想做做”第1题。重点讲第4个是交换和结合律一起使用。

  3、比一比,谁算得快。完成第三题。

  4、拓展560+(140+70)=(□+□)+□

  (64+□)+27=64+(□+27)

  71+68+□

  你认为□里填什么数会使你的计算简便?怎样简便计算?

  5、游戏:找朋友。

  (1)哪两个同学手上的树叶的和是100?

  (2)同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。

  四、全课总结,引申知识

  今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。

  五、布置作业:

  课堂作业:《补充习题》。

  板书设计:略

  教学反思:

  《加法运算律》这一节课是在学生经过较长时间的四则运算学习,对四则运算已有较多的感性认识的基础上学习的。学生从小学低年级开始就接触过加法的验算和口算等方面的知识,对此有较多的感性认识,这是学习加法运算律的基础。在这节课中,我有意识地让学生运用已有的经验,经历运算律的发现过程,让学生在“观察、发现、猜想、验证、得出结论”的数学学习方法中学会学习。一节课下来,自我感觉做得较成功的有以下几点:

  一、联系生活实际,激发求知。

  小学生学习数学的积极性一定程度上取决于他们对学习素材的兴趣,现实的问题情境、有趣的数学游戏容易激发他们学习的欲望。所以上课伊始,我以学生身边熟悉的:跳绳、踢毽子为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。先让学生观察情境图,从图上获得哪些信息?根据这些信息你可以提出什么问题?这样的导入既吸引了学生注意力,又培养了学生的问题意识。学生能马上提出一些问题,为后面的探究学习做好了铺垫。通过情境,组织学生认真观察,分析根据提供的信息来选择所提问题有联系的条件进行分析、计算,使学生经历加法运算律产生和形成的过程。

  二、注重策略方法,指导自主学习。

  数学课程标准指出:最有价值的知识是关于方法的知识,“授之以鱼不如授之以渔”。从一开始学习加法交换律时,让学生通过参与学习活动得出观察、发现、猜想、验证、结论这一学习方法。并应用这一方法去学习加法结合律。让学生在合作与交流中去探究加法的结合律,合理地构建知识。学生掌握了学习方法就等于拿到了打开知识宝库的金钥匙。在教学时,我注意了以下几方面的问题:一是在猜测中产生举例验证的心理需求。在学生根据问题情境得28+17=45、17+28=45之后,学生通过观察发现交换两个加数的位置,和相等。我适时提出这样的猜想:“是不是任意两个加数交换位置,和都相等呢?”学生不敢肯定,有了举例验证的内在需求。二是注意让学生在交流共享中充实学习材料,增强结论的可靠性。课上的时间有限,学生的独立举例是很有限的,我通过让学生同桌合作,共同举例,达到资源共享,丰富了学习材料和数学事实,知识的归纳顺理成章。三是鼓励学生用喜欢的方法表示规律。学生思维的浪花又一次激起,有的用图形表示:△+○=○+△,有的用文字表示:甲数+乙数=乙数+甲数,也有的用字母表示:a+b=b+a。这样的思维方式既是对加法交换律的概括与提升,又能发展符号感。

  三、及时评价、鼓励。

  在课堂上我及时评价总结,肯定学生在学习过程中的点滴进步,捕捉学生在探索过程中的闪光点。学习内容的理解也提升到一个更高的层面。

  当然,一节课下来也有不少遗憾。在课堂教学中,我没有准确把握好每一个孩子,驾驭课堂的能力还不够。整节课,由于新授部份花的时间较多,显得有些拖沓,有些细节引导还不是很到位,还需要加强,但在以后的教学中我会不断地挖掘,不断学习。

运算律教学反思10

  本节课,学生已经很熟练的掌握了加法的运算定律,了解并探索加法运算定律的方法,那么为什么不让学生自己结合已经掌握的知识和方法自主探索乘法的交换律和结合律呢?因此在本节课的教学中,我设计了这样几个教学环节:有针对性的复习加法运算定律,为学生学习新知识奠定基础;回顾加法与乘法的关系,沟通新旧知识间的联系;猜测推想,调动学生探究新知识的欲望;合作交流,自主探索,充分发挥学生学习的自主性,使学生真正经历知识的发现发展的过程,使学生真正的理解知识,同时使学生掌握一定的数学学习方法和必要的活动经验;总结概括,通过教师和学生的总结使学生对乘法交换律和结合律的印象更加清晰、流畅,同时使学生了解课本上的归纳方法,帮助部分学生进一步理清了自己的思维过程;练习应用,通过多种形式,不同层次的练习,使学生巩固知识,发展学生运用知识解决问题的能力;课堂总结,在课堂总结中,我注重引导学生从三个层次进行总结回顾,

  1、数学知识的总结回顾;

  2、数学学习方法和学习技能的总结提炼;

  3、通过让学生谈收获,引导学生从多方面展开自我反思和总结。促进学生的`发展和提高。

  在本节课的教学过程中,我充分发挥学生学习的自主性,同时积极做好学生学习的组织者、合作者,发挥好教师的指导作用。积极运用新课标所倡导的自主探索、合作交流等的学习方式,努力给学生提供从事数学学习活动的机会,使学生通过经历知识的发现、发展过程,使学生掌握基本的数学知识和技能,获得必要的数学活动经验,同时使学生获得基本数学思想和方法

运算律教学反思11

  学生对于加法和乘法的交换律掌握较好,基本能够灵活运用。然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。

  归结有以下几个原因:第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)。第二,学生能正确的分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的考验,如 42 X 25 ,运用运算定律计算这个算式,很生很多是把 25 分为 20 和 5 ,这样即使运用了乘法分配律,但较之把 42 分成 40 和 2 相比,有很大的出入。这主要是因为学生还没有完全形成 25X4 得 100 这个重要的因素造成的。这里简单的描述为数学 “ 数感 ” 吧,还有 125 和 8 得 1000 一样。第三,有的学生甚至运用运算定律折腾了一番又回到了原来的算式。

  综上所述,解决办法只能是多讲多练,不断的`培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。其次,等待讲解了下节内容简便运算之后,我想学生会得到一个明确的回答,原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。

运算律教学反思12

  本节课是对加法运算律的运用,通过这节课的教学,一方面巩固学生对加法交换律和结合律的理解和运用,另一方面是让学生在学习的过程中进一步体会到学习运算律的价值。

  首先以计算47+58+42为教学例题,讨论:你会怎么做?生:先给58+42加上小括号。运用了加法的`结合律。师:怎么计算89+14+56。最后出示:78+(47+22),学生独立做在本子上。交流时,强调这里运用了加法的交换律和结合律。练习时候,我以怎么计算204+417为例,学生独立完成。交流时出现两种情况:一个是把204拆成200+4,一个是把417拆成400+17。师:哪个数更接近整百呢?把哪个数拆开更有利于我们接下来的计算?学生们统一了认识,在后来的练习中,还是有好多孩子不能选择更接近整百的数去拆。

  对于例如:345+201这样的计算,在怎样运用简便计算时掌握的不是很好。这反映了学生对于运算律的运用还不够灵活,尤其是对运算律的逆向运用,我觉得可以进行一个专项的训练。

运算律教学反思13

  一年级时学生就开始接触加法计算,对加法积累了较多的感性认识,这是学习加法交换律和结合律的基础。

  教材安排这两个运算教学时,采用了不完全的归纳推理。两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解决之间的共同特点,初步感受运算规律。然后让学生根据对运算律的出步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

  《乘法运算律》这节课我以建构主义学习理论位指导,力求体现“以学生发展为本”的指导思想。基于这种思想,设计课堂教学时,注意了以下几个问题:

  1、提供自主探索的机会。

  “动手实践、自主探索与合作交流上学习数学的.重要方式”。在探索加法运算律的过程中,教师为学生提供自主探索的时间和空间,使学生经历加法运算律产生和形成的过程,同时也在学习活动中获得成功的体验,增强了学习数学的信心。

  2、关注学生已有的知识经验。

  在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知学习奠定了良好的基础。教学中始终处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

  3、引导学生在体验中感悟数学。

  教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。

运算律教学反思14

  学生从一年级就开始接触加法计算,对加法积累了较多的感性认识,这是学习加法交换律和结合律的基础。教材安排这两个运算教学时,采用了不完全的归纳推理。两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解决之间的共同特点,初步感受运算规律。然后让学生根据对运算律的出步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

  1、提供自主探索的机会。

  “动手实践、自主探索与合作交流上学习数学的重要方式”。在探索加法运算律的过程中,教师为学生提供自主探索的时间和空间,使学生经历加法运算律产生和形成的过程,同时也在学习活动中获得成功的体验,增强了学习数学的信心。

  2、关注学生已有的知识经验。

  在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知学习奠定了良好的基础。教学中始终处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

  3、引导学生在体验中感悟数学。

  教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。

  我觉得下面几点很重要:

  1、注意引导学生观察、比较、体验。在运用定律,进行简便计算的过程中,我并没有直接让学生进行简便计算,而是通过填空的形式进行比较,你比较欣赏哪一种,使学生初步感觉到运用加法定律可以简算。在此基础上出示例题,这样学生是在充分体验的基础上真正感受到运用运算定律的优点,可以培养优化意识,让更多的学生自然而然地产生运用定律进行简算的欲望,从而再次激发学生的`求知兴趣。在学生体验到运用加法定律能够简算以后,我再提出:是不是所有的算式都能简算呢?并在巩固练习中穿插了一道不能简算的题目,进一步培养学生注意观察、分析问题的能力。

  2、在本单元的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。针对平时学生练习中的错误用加法结合律简算。在连线题目中,加法运算律的扩展型,通过练习让学生明白加法运算律也可以是两个数的差,也可以是三个数的和,使学生对加法运算律的内容得到进一步完整。总之,在本单元的教学中新理念有所体现,但在具体的操作中还缺乏成熟的思考,学生的积极性没有充分调动起来,而且在生活情境的创设中对情境的趣味性、兴趣性、情境性不能很好的体现。

  3、引导学生注重语言概括。四年级的学生通过直观感知能够理解加法运算律的涵义,也能够用具体的算式来验证加法运算律,用字母、符号来表述加法运算律,但是当让他们用自己的语言来描述加法运算律时,就很困难了。这主要符合皮亚杰关于儿童认知发展的四个阶段规律:7岁—12岁是属于具体运算阶段,这一阶段的特征虽然儿童能够记住另外一个人所给的定义,并再现他们已经记住的东西,但他们自己却很少能够给出一个清楚的描述性定义,也就是这一阶段的孩子揭示概念本质属性的能力弱,要学生下定义、描述规律是困难的。因此我花了较多的时间让学生会用语言表达加法运算律,如:通过验证表达结论——再用自己的话说说——再解释字母公式。从而促使学生能够真正理解定律的含义。

运算律教学反思15

  对于乘法的结合律和乘法交换律,单从形式上理解比较容易,但是作为教师不能让学生只注重形式。

  认为只要知道把两个数结合起来相乘,或者交换两个数的位置相乘积不变这个规律就可以做题了,而是要让学生明白算理,通过学习培养学生探索创新的能力。因此在教学时通过引导学生独立解决问题,在交流中展示不同的解题思路,引出对两个算式计算顺序的研究。

  进而提出自己的猜想,进行举例验证,得出结论。明白三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后两个数相乘,再乘第一个数,积不变。通过联系多个计算算式,重点让学生放在对规律的.体会和感悟上,加深理解,防止死记硬背,让学生学会探索。学生理解了乘法交换律和乘法结合律,更重要的是要让学生能够灵活运用。这样就要求学生熟记一些运算,如凡是看到25、125这些数,就要想到4和8,因为他们结合可以凑成 100和1000,使计算简便。

  同时部分学生容易混用,要提醒学生注意观察,认识到乘法的交换律和结合律只有在几个数连乘的情况下才能运用,在混合运算中是不能用的。在自主练习时,不能单纯地为了处理自主练习的练习题,而是要在处理练习的过程中,让学生探索发现新的知识——乘除法各部分之间的关系和除法的性质。所以在教学过程中,也要引导学生经历从探索到发现,再到分析概括出规律的过程。这样既达到了巩固练习的目的,同时又培养了学生探索发现、分析概括的能力。

【运算律教学反思】相关文章:

《加法运算律》教学反思07-27

《运算律》教案07-09

运算教学反思10-08

《运算律》教案15篇08-14

简便运算的教学反思06-29

《数的运算》教学反思06-14

0的运算教学反思01-09

幂的运算教学反思09-01

(通用)运算教学反思09-14

交换律教学反思09-08