当前位置:9136范文网>教育范文>教学计划>八年级数学教学工作计划

八年级数学教学工作计划

时间:2023-05-12 10:05:56 教学计划 我要投稿

关于八年级数学教学工作计划汇总七篇

  时光在流逝,从不停歇,我们的工作同时也在不断更新迭代中,来为以后的工作做一份计划吧。什么样的计划才是有效的呢?以下是小编整理的八年级数学教学工作计划7篇,仅供参考,欢迎大家阅读。

关于八年级数学教学工作计划汇总七篇

八年级数学教学工作计划 篇1

  一、指导思想

  通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

  二、学情分析

  八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。本班是刚刚接手,对班上学生不了解,从原科任老师处得知:优生不多,但后进生却较多,有少数学生不上进,基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

  三、教材分析

  第十一章

  全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

  第十二章

  轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的.轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

  第十三章

  实数。从平方根于立方根说起,学习有关实数的有关知识,并以这些知识解决一些实际问题。

  第十四章

  一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

  第十五章

  整式在形式上力求突出:整式及整式运算产生的实际背景,使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程,为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握。

  四、教学措施

  1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

  2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

  3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

  4、不断改进教学方法,提高自身业务素养。

  5、教学中注重自主学习、合作学习、探究学习。

八年级数学教学工作计划 篇2

  一、 指导思想

  在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神 通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

  二、学情分析

  八年级是初中学习过程中关键时期,学生基础的好坏,直接影响到将来是否能升学。我班优生稍少,学生非常活跃,有少数学生不求上进,思维不紧跟老师。有的学生思想单纯爱玩,缺乏自主学习的习惯,有部分同学基础较差,厌学无目标。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

  三、 教材分析

  本学期教学内容共计五章,知识前后联系,教材的教学目标,重、难点分析如下:

  《义务教育教科书数学》八年级下册包括二次根式,勾股定理,平行四边形,一次函数,数据的分析等五章内容,学习内容涉及到了《义务教育数学课程标准(20xx年版)》(以下简称《课程标准》)中“数与代数”“图形与几何”“统计与概率”“综合与实践”全部四个领域。其中对于“综合与实践”领域的内容,本册书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,通过这些课题学习和数学活动落实“综合与实践”的要求。

  第16章“二次根式”主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。通过本章学习,学生将建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。

  第17章“勾股定理”主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。

  第18章“平行四边形”主要研究一般平行四边形概念、性质和判定,还研究了矩形、菱形和正方形等几种特殊的平行四边形。

  第19章是“一次函数”,其主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系,以及以建立一次函数模型来选择最优方案为素材的课题学习。

  第20章“数据的分析”主要研究平均数(主要是加权平均数)、中位数、众数以及方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

  本学期全书共需约62课时,具体分配如下:

  第十六章 二次根式 约9课时

  第十七章 勾股定理 约9课时

  第十八章 平行四边形 约15课时

  第十九章 一次函数 约17课时

  第二十章 数据的分析 约12课时

  四、提高学科教育质量的主要措施:

  1、认真做好教学六认真工作。把教学六认真作为提高成绩主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写学后总结,写复习提纲,使知识来源于学生的构造。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

  6、培养学生良好的.学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

  7、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

  8、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

  9、 培养学生学习数学的良好习惯。这些习惯包括:

  ①认真做作业的习惯包括作业前清理好桌面,作业后认真检查;

  ②预习的习惯;

  ③认真看批改后的作业并及时更正的习惯;

  ④认真做好课前准备的习惯;

  ⑤在书上作精要笔记的习惯;

  ⑥妥善保管书籍资料和学习用品的习惯;

  ⑦认真阅读数学教材的习惯。

八年级数学教学工作计划 篇3

  学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

  一、指导思想

  以构建生动化课堂为契机,教育学生掌握初中数学学习常规,掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考探索的新思想,培养学生应用数学知识解决问题的能力。

  二、根据学生的现状为提高学生的数学成绩我打算采取以下的措施:

  1、认真做好教学六认真工作。把教学六认真做为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,认真批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小结,写复习提纲,使知识来源于学生的构造。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

  6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的`非智力因素,弥补智力上的不足。

  三、需要注意的方面:

  1、在课堂上改进教学方法,多用探索、启发式教学。

  2、注意教科书的系统性和学科知识的整合使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。

  3、注意发展学生探索知识的能力,提高学生分析问题的能力。

  4、加强开放性问题、探究性问题教学,培养学生创新意识,探究能力。

  5、关心学生的学习、生活,与学生建立良好的师生关系,营造和谐的课堂气氛。

  6、坚持因材施教原则,逐步实施分层教学。

  7、注意对多媒体课件的使用。

  总之,我将尽我最大的努力,是每一个学生在数学这一学科上得到应有的提高和能力上的发展。

  希望各位教师能够认真阅读八年级数学教学工作计划,努力提高自己的教学水平。

八年级数学教学工作计划 篇4

  一、学情分析

  八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。两班比较,82班学生流动多一些,优生流失比较多以至,后进面较大,有少数学生不上进,思维不紧跟老师。81班学生总体成绩均衡,优生思维非常活跃,但大多数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

  二、教材分析

  第1章 二次根式:二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。这些都说明了前后知识之间的内在联系。

  本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化)。

  第2章 一元二次方程;本章的主要内容是一元二次方程的解法和应用,课本首先引入一元二次方程的概念,从实数的性质,将分解成为两个一次因式相乘积为零的一元二次方程转化为两个一元一次方程入手,介绍了利用因式分解法解一元二次方程的方法,体现了数学的.转化思想。接着课本首先从数的开平方的知识出发,直接讲开平方法,然后依次介绍了配方法和公式法。在讲述公式法的同时,课本特别给出了利用计算器解一元二次方程的解法示例,以揭示技术发展给数学学习带来的影响,这也是一种新的尝试。同时,以建立数学模型为主要着力点介绍了一元二次方程的应用,并在例题的设置上充分考虑了图表、立体图形、物体运动和经济活动中的问题背景,力图使学生在现实的环境中学习数学。

  第3章 频数及其分布:统计学是搜集数据、分析数据,并根据它获得总体信息的科学.本套教材在七年级上册安排了 “数据与图表”,着重介绍了数据的收集、整理的初步方法;在八年级上册安排了“样本与数据分析初步”,通过对数据集中程度和离散程度的统计量的计算,初步了解了如何对数据的基本状态进行分析.为了进一步分析、处理数据,供决策时参考,有时我们还要了解数据的分布情况,找出新的特征数.“频数及其分布”这一章就是解决了这一问题.“频数及其分布”这部分内容在原总指浙江版义务教材中也有,但只是作为概率统计初步中的一小节.考虑到频数、频率、频数直方图、频数折线图与日常生活、自然、社会和科学技术领域的密切联系,《数学课程标准》增加了这块内容的份量.本套教材将这块内容独立设章的目的,一方面可用足够的篇幅来更清楚、更详细阐述,也是为每册循序渐进地学习概率与统计知识所作的精心安排。

  第4章命题与证明:本章是学生系统学习论证几何的起步阶段。推理形式从归纳推理为主体,转变为演绎推理为主体,逻辑性加强,推理表达要求严格规范是本章的特点。教学中应精心设计使学生从直观几何到论证几何,从归纳推理到演绎推理的过渡阶梯。要重视范例的分析过程教学,使学生逐步学会逆思维的方法。初学论证几何,无论是分析证明思路,还是写证明过程,学生都会感到困难,应多作示范。

  第5章 平行四边形:本章是学习了三角形、几何证明的基础上,开始研究四边形,四边形的学习与三角形有着密切的联系,许多四边形的问题都通过连线转化为两个三角形的问题来解决,且研究的方法有许多类同的地方,所以说四边形是三角形的应用和深化;另外在学了几何证明后,平行四边形内容为证明实例提供了丰富的材料,让学生有机会实践、巩固前面的知识.本章一开始从多边形引入,在知识体系上看也是顺理成章,探索多边形的内角和办法并不深奥,所隐含化归为三角形的思想却是数学中常用的思想方法,会引起学生的关注和兴趣.平行四边形是中心对称图形,利用中心对称变换使平行四边形的许多性质得到合理的解释,用轴对称变换来研究等腰三角形,用中心对称变换来研究平行四边形,用变换的观点来阐述图形的几何性质也是新教材的特点之一.如三角形中位线的定理用中心对称的观点来证明显得合理且简单明了.本章还穿插了逆命题和逆定理的概念,前一章是“命题与证明”,为了避免在一章中集中过多的抽象概念,给学生带来困难,所以把逆命题与逆定理放在本章,既分散了难点,又因为已有一定量知识积累,有利于学生理解握.

  第6章特殊平行四边形与梯形:本章是上一章《平行四边形》的深化且延续,从知识体系上看从旋转变换定义了中心对称图形平行四边形以后,从角的特殊性(直角)、从边的特殊性(等边)得到矩形和菱形;从对图形研究的角度看,推理论证在这一章中得到加强与深化,进一步要求学生能清晰、有条理表达自己的思考过程,做到言之有理、落笔有据.同时通过“合作学习”等形式,让学生自主探索这些基本图形的性质及其相互关系,从而丰富对空间图形的认识和感受

  本章的主要内容有矩形、菱形、正方形、梯形的概念、性质和四边形是矩形、菱形、正方形及等腰梯形的条件.有些内容在前两个学段学生已有接触,但还十分肤浅.本章不是对以前知识的简单复习,而是同类知识的螺旋上升.特殊平行四边形与梯形的概念与性质是学好本章的关键,也是为学好整个平面几何打下一个坚实的基础,是本章的教学重点。

  三、提高学科教育质量的主要措施:

  1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

  6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

  7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

  8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

  9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路

八年级数学教学工作计划 篇5

  一、学生基本情况:

  本学期中,学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,还要提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,本学期中,要抽出一定的时间给孩子们讲讲有关新概念几何,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学学习上的困难,使他们对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣,学生的自觉性降低了,学习的风气有所淡化,是本学期要解决的一个问题;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,还需要加强,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

  二、教材分析

  本学期教学内容,共计四章,知识的前后联系,教材的德育因素,重、难点分析如下:

  第一章: 实数本章主要学习平方根与立方根,二次根式的概念与四则混合运算,实数与数轴及其相关知识。这一章是孩子们初中学习的一个里程碑,他们要从有理数进入到无理数的领域,认识上将从有理数扩展到实数的范围,将进一步深化对数的认识,扩大学生的数学视野与界限,实数是后继学习内容的基础,直到复数的引入是学生所涉及的主要内容。教材从实际问题出发,归纳出平方根与立方根的概念,进而展开根式的四则混合运算,接着前进到实数,完成对数系的.扩充。本章的重点是平方根与立方根的概念,二次根式的化简与运算,实数的概念。要教学中要学生充分去讨论与思考,归纳与总结,历经知识发展与运用过程中的坎坎坷坷,做到对概念的深刻掌握与运算的熟练进行,对一些要经常运用到的化简要在课堂让就要让孩子们掌握,不要寄希望于课外,否则会增加差生的人数。

  第二章:一次函数 本章的学习会带来学生在认识上的又一大飞跃,学生要从常量的学习中进入到变量的学习中,是继方程和不等式之后的深入学习,函数是刻画和研究现实世界数量关系的重要的数学模型,它同时也是一种重要的数学思想。本章的主要内容是变量与函数、平面直角坐标系、函数的图像、一次函数、反比例函数与探索和实践等。本章的重点是函数的定义(也是整个数学中最重要的基本概念之一)、函数自变量的取值范围、一次函数、正比例函数与反比例函数的性质与图像。其难点是函数定义的理解(这个理解的过程将一直延伸甚至大学),实际应用中确定自变量的取值范围,对一次函数、正比例函数图像与性质的应用,解决实际的应用问题。通过本章的学习掌握相关的知识,同时养成数形结合的思考形式和思考方法,代数式、方程、函数、图形、直角坐标系结合起来进行思考,互相解释、互相补充,对于整个中学数学的学习,愈往后,愈显出其重要性。

  第三章: 全等三角形 本章的学习将使得孩子们对几何的认识也来一个飞跃,以前学习主要是全等变换,无论轴对称还是中心对称,平移还是旋转,其本质是全等变换,对线段之间关系,大多数涉及两条线段的关系。本章的重点是勾股定理及其证明,直角三角形的边角关系,解直角三角形(三角形边角关系的应用),难点是运用灵活运用勾股定理解决实际问题,对锐角三角函数的理解及其合理应用,解决实际问题。本章的关键是熟记特殊的锐角三角形函数,熟练进行三角函数定义的变形及其应用,充分运用本章中的两个特征图形,能极大的缩短学生的学习时间,并能让孩子把知识掌握牢固。教学中即要注重理论知识的学习,学习理论是为了更好的解决实际问题,同时在教学中要根据新课改的理念突出实践性与研究性,突出学数学、用数学的意识与过程。对勾股定理和三角函数的应用尽量和实际问题联系起来。

  第四章 频数与频率 本章是在前面学习统计与概率的基础上的进一步学习。本章的主要内容是选择合适的图表进行数据整理。教学中要让学生经历数据的收集与整理的过程,以学生合作探索活动为主。选取问题力求贴近学生的生活,使用计算器处理相关数据。

  三、本期教学任务:

  通过本期的学习,在知识与技能上,学习平方根与立方根的相关知识,学习实数;掌握二次根式的计算或化简,初步理解函数的定义,掌握理解一次函数、培养数形结合的思想方法,掌握比例线段,三角形相似,勾股定理,三角函数的定义及其应用,解直角三角形,掌握数据的整理和初步处理中的相关内容。通过本学期的学习,学生在数学的认识与理解上应该要上一个台阶。在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到”的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。

  四、提高学科教育质量的主要措施:

  1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

  5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

  6、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

  7、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

  8、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

  希望各位教师能够认真阅读最新学年度上学期八年级数学教学计划,努力提高自己的教学水平。

八年级数学教学工作计划 篇6

  一、指导思想

  以《数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。

  二、教学目标

  1.知识与技能目标

  学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

  2.过程与方法目标

  掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

  3.情感与态度目标

  通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

  三、教材分析

  第十一章三角形主要学习三角形的三边关系、分类,三角形的内角、多边形的内外角和。本章节是后两章的基础,了解了相关的知识,教学时加强与实际的联系,加强推理能力的培养,开展好数学活动。

  第十二章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

  第十三章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

  第十四章整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

  第十五章分式主要学习分式的`概念、性质、能用基本性质进行约分和通分并进行相关的四则混合运算。教学时重视和分数类比,加强分式、分式方程与实际的联系,体现数学建模思想。

  四、教学措施

  1.认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

  2.认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。

  3.抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。

  4.不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。

  5.教学中注重自主学习、合作学习、探究学习。

  6.经常听取学生良好的合理化建议。

  7.以“两头”带“中间”战略思想不变。深化两极生的训导。

  五、教育教养目的

  教育目的

  在我们周围,经常可以看到大小、形状完全相同的图形,这类图形在几何中有这特殊的意义,通过对全等三角形的学习,发展学生的合理推理能力。

  轴对称是对称中重要的一种,本章将从生活中的对称出发,研究几何图形的轴对称,并进一步利用轴对称研究等腰三角形的性质。

  随着人类对数的认识的不断发展,人类从现实世界抽象出一种不同于有理数的数,有理数和无理数合起来形成一种新的数———实数,学生将更进一步对实数进行学习与运算。

  函数——用来描述变化中的数量关系,能深刻地帮助了解千变万化的世界,并将通过数形结合来学习与解决实际问题。

  教养目的

  本册教材与前两册教材紧密相接,通过思考、探究、归纳等从身边的实际问题出发,探索发现数学的奥秘,通过复习巩固、综合运用、拓广探索等三个层次问题的解决,提高自己运用数学知识的能力。

  本册通过全等三角形与轴对称的学习,使学生对图形有进一步的认识,在原来对数的认识基础上进一步拓展学习范围,通过一次函数的学习,是学生学会分析实际问题中变化的数量关系之间的描述,并将继续对整式进一步进行学习与讨论,进行综合运算与应用

八年级数学教学工作计划 篇7

  教学目标:

  1.(1)掌握角平分线的尺规作图方法;理解过直线上一点作这条直线的垂线的尺规作图原理;(2)理解并掌握角的平分线的性质定理。(3) 会运用角平分线的性质进行推理论证,解决相关的几何问题;(4)进行数学活动的过程中,能进行有条理地思考,形成简单的推理能力; (5)使学生经历探索角平分线的性质的过程,领会用操作、归纳、推理论证得出数学结论的思想方法。

  教学重点:角平分线的尺规作图及角平分线的性质及其应用。

  教学难点:角平分线的尺规作图方法的提炼与角平分线性质的灵活应用。

  教学过程:

  活动一、知识回顾

  1、不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?再打开纸片 ,看看折痕与这个角有何关系?

  2、请叙述角平分线的定义。

  活动二、情景引入

  如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?

  证明:在△ACD和△ACB中

  AD=AB(已知)

  ∵ DC=BC(已知)

  CA=CA(公共边)

  ∴ △ACD≌△ACB(SSS)

  ∴∠CAD=∠CAB(全等三角形的对应角相等)

  ∴AC平分∠DAB(角平分线的定义)

  活动三、新知探究

  一、根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器,要求尺规作图)

  二、怎样用尺规作图方法作已知直线的垂线?(过这条直线上一点)

  (1)平分平角∠AOB(如下图所示)

  (2)通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?

  (3)结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。

  三、探究角平分线的性质

  1、已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,PD与PE有何关系?并证明。

  解:PD与PE相等。证明如下:

  ∵OC平分∠AOB(已知)

  ∴∠1=∠2 (角平分线的定义)

  ∵PD⊥OA,PE⊥OB (已知)

  ∴∠PDO=∠PEO (垂直的定义)

  在△PDO和△PEO中

  ∠PDO=∠PEO (已证)

  ∵ ∠1=∠2 (已证)

  OP=OP (公共边)

  ∴△PDO≌△PEO (AAS)

  ∴PD=PE (全等三角形的对应边相等)

  2、由此得到角平分线的性质:角的平分线上的`点到角两边的距离相等。

  3、利用此性质怎样书写推理过程?

  ∵OC平分∠AOB,点P在OC上,且 PD⊥OA于D,PE⊥OB于E

  ∴PD=PE(角的平分线上的点到角两边的距离相等)

  活动四、例题讲解

  例。已知:如图,△ABC的角平分线BM、CN相交于点P.

  求证:点P到三边AB、BC、CA的距离相等

  证明:过点P作PD 、PE、PF分别垂直于AB、BC、CA,

  垂足为D、E、F

  ∵BM是△ABC的角平分线,点P在BM上

  ∴PD=PE (角平分线上的点到角的两边的距离相等)

  同理:PE=PF.∴ PD=PE=PF.

  即点P到边AB、BC、CA的距离相等

  活动五、实践应用

  1.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:CF=EB

  分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF≌Rt△EDB.

  现已有一个条件BD=DF,还需要我们找什么条件?

  注意到题设条件:AD是∠BAC的平分线,DE⊥AB于E, ∠C=90°故有:DC=DE (角平分线的性质)

  进而可用HL证明上述两个直角三角形全等

  证明:∵∠C=90°∴DC⊥AC

  又∵AD是∠BAC的平分线,DE⊥AB于E

  ∴∠DEB=90°,DC=DE(角平分线的性质)

  在Rt△CDF和Rt△EDB中

  DF=DB(已知)

  ∵

  DC=DE(已证)

  ∴ Rt△CDF≌Rt△EDB(HL)

  ∴ CF=EB(全等三角形的对应边相等)

  2、已知:如右下图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.

  求证:EB=FC.

  证明:∵AD是△ABC的角平分线,且DE⊥AB于E,DF⊥AC于F

  ∴∠DEB=∠DFC=90°(垂直的定义)

  DE=DF(角平分线的性质)

  在Rt△DEB和Rt△DFC中

  BD=CD

  ∵

  DE=DF

  ∴Rt△DEB≌Rt△DFC(HL)

  ∴EB=FC(全等三角形的对应边相等)

  3.已知:如图,△ABC的两个外角的平分线BD与CE相交于点P.

  求证:点P到三边AB,BC,CA所在直线的距离相等。

  证明:作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H.

  又∵△ABC的两个外角的平分线BD与CE相交于点P

  ∴PG=PF , PF=PH(角平分线的性质)

  即PG=PF=PH

  ∴点P到三边AB,BC,CA所在直线的距离相等。

  活动六、归纳总结

  1、定理:角平分线上的点到这个角的两边距离相等。

  2、定理的使用形式:

  ∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)

  ∴PD=PE(角平分线上的点到这个角的两边距离相等)。

  尺规作图:①作已知角的平分线;②过直线上一点作这条直线的垂线。

  作业布置: 1.预习课本P21~P23

  2.完成课本P22T2,P23T4,5

【八年级数学教学工作计划】相关文章:

八年级的数学教学工作计划11-29

数学八年级的教学反思02-15

八年级数学教学工作计划03-17

八年级上数学教学工作计划03-31

八年级数学教学工作计划07-01

八年级下册的数学教学工作计划11-25

八年级数学上教学工作计划03-21

八年级数学教学工作计划【热门】03-05

八年级数学教学工作计划【荐】03-05

八年级下册数学教学工作计划06-15