八年级数学上册教学计划
光阴迅速,一眨眼就过去了,相信大家对即将到来的工作生活满心期待吧!写一份计划,为接下来的工作做准备吧!什么样的计划才是好的计划呢?以下是小编帮大家整理的八年级数学上册教学计划,仅供参考,希望能够帮助到大家。
八年级数学上册教学计划1
一、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。两班比较,83班优生多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。84班学生单纯,有大多数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
二、教材分析
第一章 平 行线是在七年级上第七章提出平行线的概念、画法后的延续,这章将继续学习平行线的有关判定和性质;教学时把握证明难度,避免概念超前,加强形的建模。教学应注意以下几点:1、说理的过程仍以填空为主,注意避免综合性较强的说理出现。2、要避免证明、命题、定理、公理等词的口头出现,课本是以判定方法、性质、结论来描述。3、要注重现实生活中的实物情景抽象为相交线、平行线等数学图形的建模过程。4、还应注意画图、探究性题的教学。另外对教材中(1)P8 例2出现了添辅助线的说明方法,教师需根据实际情况,不要作深入展开,(2)P20 第5题:不是很明确其意图。
第二章 特殊三角形是在七年级下册第一章三角形的基础知识和全等三角形的基础上学习等腰三角形、等边三角形、直角三角形的判定和性质,进一步熟练几何符号语言的表达、书写;教学时要控制证明的综合难度,侧重计算与形状的判定。本节与以往教材相比较,有以下特点:1、加强了对等边三角形的学习要求;2、强化了直角三角形斜边上的中线等于斜边的一半的性质3、淡化了300角所对的直角边等于斜边的一半的性质。4、P28 等腰三角形的判定说明、P36 例3,教师可简单提出辅助线的作法、作用、要求,但不要藉此来提高难度。5、可以在勾股定理的知识上,让学生去研究探讨,增强数学人文性教育。另外教材中的(1)P24—4、5两题的`难度较大,综合性较强,教师要作提示、作小结; (2)教师最好还是根据实际情况补充300角的直角三角形性质;(3)勾股定理这节中出现了不少“定理”一词,是否在教学时可改。
第三章 直 棱柱是从七年级上册提出立体图形概念后第一次对立体图形的研究,与原浙江版义务教材相比,是较新的一章(原教材有立体图形直观图的画法),主要是培养学生空间想像能力,也是为高中阶段立体几何中棱柱的学习做准备;教学时要借助实物、课件的展示,逐步构建空间想象基础能力,教材重点落在两处: 1、直棱柱特征及表面展开图2、画三视图,关键要理解“长对正,高平齐,宽相等”法则。因此,在教学中要注意1)充分利用实物、课件、实际动手操作等途径,使学生能慢慢的在实物与空间想象之间找到一些转换的经验,(2)在教学时对解答过程、说理过程不作过高的要求,避免过高的严密的要求挫伤学生学习本章的积极性。
第四章 样本与数据分析是在学习了七年级上册第六章数据收集与图表的基础上,对科学取样、数据分析、合理化决策的研究学习,是实用性较强的一章;教材以生活现象为导入背景,以解决问题为达成目标,教学应注意(1)避免对样本、总体、个体的定性的描述;(2)增加了对某一事件研究抽样与普查的方法选择;(3)加强了对平均数、众数、中位数、方差标准差这些数据处理方法的决策判断,
第五章 一元一次不等式是在掌握了七年级上册第五章一元一次方程及七年级下册第四章二元一次方程组的基础上,学会一元一次不等式(组)的解法,以及利用一元一次不等式解应用题;教学时应注重与方程、等式的迁移类比,发挥数轴工具性,建立数形结合分析问题的习惯。
第六章 图形与坐标是函数知识学习的开始,与老教材比较也是较新的一章,重在突出直角坐标系的建立与运用,其中也有一部分知识与七年级下册第二章图形和变换相关; 教学时应重视场境模拟,降低坐标表达的抽象,侧重变换图形的坐标描述。 当然更应注意多利用实际场景图示,降低点的位置表达的抽象性,增加点与有序数对的对应性。
第七章 一次函数是在第六章建立直角坐标系后通过对实际生活中变量间变化关系的刻画,侧重了函数是刻画现实生活的又一数学模型。注重函数建模,降低函数抽象图形分析,融合方程、不等式、函数的统一,教学中应做到1、突出了函数是生活中变量之间数量关系的刻画。很多问题是以实际生活背景为载体。2、函数解析式,一次函数,正比例函数的教学顺序做了调整。3、要加强函数基础知识的练习,要注重解题时从应用中来到应用中去的理念。要充分利用合作小组讨论,有足够形成建模的时间,切忌分析模式化,练习呈式化。
另外,本书的设计题(P95, P181)切合学生实际,容易操作,要好好利用,既培养学生的动手能力又增强学生学习数学的兴趣。在课题学习P181-182《怎样选择较优方案》时,根据班级的实际情况建议作为一堂较重要的方程、不等式、函数综合应用课来讲。
三、提高学科教育质量的主要措施:
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
八年级数学上册教学计划2
八年级是初中阶段最为关键的一年,如果学生在八年级学习抓得比较紧,到九年级时相对就会变得轻松,反之,到了九年级后就会完全放弃,数学尤其如此。事实上在七年级时,学生对学习数学的兴趣深厚,也会很努力,但如果效果不是很好时,相当部分学生就会放弃。因此在制定八年级数学教学计划时要充分考虑到这一点。
一、指导思想
坚持党的教育方针,以《初中数学新课程标准》为准绳,进一步将新课程改革推向更深层次,进一步提高学生的基础知识和基本技能。结合学生的实际情况和教材内容,制定切实可行的教学计划,进一步培养学生创新思维和应用数学的能力。通过本学期的数学教学,激发学生学习数学的兴趣,逐步提高学生的数学成绩,完成八年级上册数学教学任务。
二、教学目标
知识技能目标:认识实数,掌握实数有关的运算方法;掌握全等三角形的性质与判定、轴对称及轴对称图形的特点;掌握整式的乘除运算、乘法公式和因式分解。过程方法目标:初步建立数形结合的思维模式,学会观察、分析、归纳、总结、几何图形的内在特点,学会使用数学语言表示数学关系。态度情感目标:从生活入手认识数学,探索数学规律,并将数学知识回归到生活之中。
三、教材分析
第十一章 三角形
本章主要学习的是与三角形有关的线段和有关的角以及延伸到多边形的内角和,
教学重点:掌握三角形的特性,会按角的特征及边的特征给三角形进行分类,三角形的内角和是180°的规律。
教学难点:懂得判断三角形三条线段能否构成一个三角形的方法,并能用于解决有关的问题;使学生理解三角形的内角和是180°这一规律
第十二章 全等三角形
本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。教学难点:领会证明的分析思路、学会运用综合法证明的格式。教学关键提示:突出全等三角形的判定。
第十三章 轴对称
本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。教学关键提示:突出分析问题的思维方式。
第十四章 整式的乘除与因式分解
本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。教学关键提示:引导学生运用类比的思想理解因式分解,并理解因式分解与整式乘法的互逆性。
第十五章 分式
本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。本点重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。
四、教学措施
1.作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。
2.营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。
3.搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。
4.写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的`经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。
5.加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。
6.成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。
7.组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。
五、课后辅导:
为了更好地提高教学效果,补充课堂教学中的不足之处,辅导是必不可少的一环,主要有: 布置作业,及时检查并订正。
2、课后对学生知识掌握情况进行调查,教学效果进行咨询,哪些知识点还需进一步巩固,哪些知识还没有讲解透彻,可以从学生那里获得第一手资料,从而调整自己的教学计划。
3、激励学生多问为什么,扩大学生的知识视野。
4、努力开展第二课堂活动,补充课堂教学的不足之处,调动学生学习的积极性和学习兴趣。
5、及时了解学生的思想变化,帮助学生解决学习与生活中的一些难点,及时做好学生的政治思想工作。
八年级数学上册教学计划3
1. 了解线段的比和成比例线段的概念,知道两条线段的比与所采用的度量单位无关;
2. 理解并掌握比例的基本性质,了解比例中项的.概念;
3. 了解黄金分割,能利用比例的基本性质解决一些简单的问
教学重点
比例性质及有关计算 黄金分割
教学难点
比例性质的应用
教学过程
设计意图
那么这四条线段成比例线段,简称比例线段。
比例性质:
如果 。b叫作a,c的比例中项。
课堂练习:
1. 已知点c在线段AB上,且AC:CB=2:3,求AB:AC的比值。
2. 已知线段a=4cm,b=9cm,求a,b的比例中项。
3. 如图,在Rt△ABC中,∠C=30°,AB=1,求 ,求线段AC的长。
八年级数学上册教学计划4
一、学生基本情况:
在学生所学知识的掌握程度上,整个班级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,在几何中,教材没有安排三角形全等知识,我在教学中进行了补充,相对正规教学来说,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,前面的教学中,面对山里的孩子,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
二、教材分析
第一章平行线是在七年级上第七章提出平行线的概念、画法后的延续,这章将继续学习平行线的有关判定和性质;教学时把握证明难度,避免概念超前,加强形的建模。教学应注意以下几点:1、说理的过程仍以填空为主,注意避免综合性较强的说理出现。2、要避免证明、命题、定理、公理等词的口头出现,课本是以判定方法、性质、结论来描述。3、要注重现实生活中的实物情景抽象为相交线、平行线等数学图形的建模过程。4、还应注意画图、探究性题的教学。另外对教材中(1)P8例2出现了添辅助线的说明方法,教师需根据实际情况,不要作深入展开,(2)P20 第5题:不是很明确其意图。
第二章特殊三角形是在七年级下册第一章三角形的基础知识和全等三角形的基础上学习等腰三角形、等边三角形、直角三角形的判定和性质,进一步熟练几何符号语言的表达、书写;教学时要控制证明的综合难度,侧重计算与形状的判定。本节与以往教材相比较,有以下特点:1、加强了对等边三角形的'学习要求;2、强化了直角三角形斜边上的中线等于斜边的一半的性质3、淡化了300角所对的直角边等于斜边的一半的性质。4、P28等腰三角形的判定说明、P36例3,教师可简单提出辅助线的作法、作用、要求,但不要藉此来提高难度。5、可以在勾股定理的知识上,让学生去研究探讨,增强数学人文性教育。另外教材中的(1)P24—4、5两题的难度较大,综合性较强,教师要作提示、作小结;(2)教师最好还是根据实际情况补充300角的直角三角形性质;(3)勾股定理这节中出现了不少“定理”一词,是否在教学时可改。
第三章直棱柱是从七年级上册提出立体图形概念后第一次对立体图形的研究,与原浙江版义务教材相比,是较新的一章(原教材有立体图形直观图的画法),主要是培养学生空间想像能力,也是为高中阶段立体几何中棱柱的学习做准备;教学时要借助实物、课件的展示,逐步构建空间想象基础能力,教材重点落在两处:
1、直棱柱特征及表面展开图2、画三视图,关键要理解“长对正,高平齐,宽相等”法则。因此,在教学中要注意1)充分利用实物、课件、实际动手操作等途径,使学生能慢慢的在实物与空间想象之间找到一些转换的经验,(2)在教学时对解答过程、说理过程不作过高的要求,避免过高的严密的要求挫伤学生学习本章的积极性。
第四章样本与数据分析是在学习了七年级上册第六章数据收集与图表的基础上,对科学取样、数据分析、合理化决策的研究学习,是实用性较强的一章;教材以生活现象为导入背景,以解决问题为达成目标,教学应注意(1)避免对样本、总体、个体的定性的描述;(2)增加了对某一事件研究抽样与普查的方法选择;(3)加强了对平均数、众数、中位数、方差标准差这些数据处理方法的决策判断,第五章一元一次不等式是在掌握了七年级上册第五章一元一次方程及七年级下册第四章二元一次方程组的基础上,学会一元一次不等式(组)的解法,以及利用一元一次不等式解应用题;教学时应注重与方程、等式的迁移类比,发挥数轴工具性,建立数形结合分析问题的习惯第六章图形与坐标是函数知识学习的开始,与老教材比较也是较新的一章,重在突出直角坐标系的建立与运用,其中也有一部分知识与七年级下册第二章图形和变换相关;教学时应重视场境模拟,降低坐标表达的抽象,侧重变换图形的坐标描述。
当然更应注意多利用实际场景图示,降低点的位置表达的抽象性,增加点与有序数对的对应性。
第七章一次函数是在第六章建立直角坐标系后通过对实际生活中变量间变化关系的刻画,侧重了函数是刻画现实生活的又一数学模型。注重函数建模,降低函数抽象图形分析,融合方程、不等式、函数的统一,教学中应做到1、突出了函数是生活中变量之间数量关系的刻画。很多问题是以实际生活背景为载体。2、函数解析式,一次函数,正比例函数的教学顺序做了调整。3、要加强函数基础知识的练习,要注重解题时从应用中来到应用中去的理念。要充分利用合作小组讨论,有足够形成建模的时间,切忌分析模式化,练习呈式化。
另外,本书的设计题(P95, P181)切合学生实际,容易操作,要好好利用,既培养学生的动手能力又增强学生学习数学的兴趣。在课题学习P181-182《怎样选择较优方案》时,根据班级的实际情况建议作为一堂较重要的方程、不等式、函数综合应用课来讲。
三、提高学科教育质量的主要措施:
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文[2]
,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。
四。教学进度
第1周 回头考及1.1----1.2
第2周 1.3——1.4第一章复习
第3周 第一章测试,2.1——2.3
第4周 2.4——2.6(1)
第5周 2.6(2)——2.7及第二章复习
第6周 第二章测试 3.1——3.3
第7周 3.4第四章复习及测试
第8周 4.1——4.4
第9周 4.5 第四章复习及测试
第10周 期中复习
第11周 期中考试及分析
第12周 5.1——5.3(2)
第13周 5.3(3)——5.4 第五章复习
第14周 第五章复习及测试 6.1
第15周 6.2——6.3
第16周 第六章复习及测试 7.1
第17周 7.2——7.3
第18周 7.4——7.5
第19周 第七章复习及测试 期末复习开始
八年级数学上册教学计划5
教学目标:
1.知识目标:
(1)掌握解分式方程的步骤。
(2)理解解分式方程时验根的必要性。
2.能力目标:
会按照解分式方程的步骤解分式方程。
3.情感与价值观:
(1) 培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
(2) 运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。
老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思想。弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。
重点:
1.探索解分式方程的步骤,熟练掌握分式方程的解法。
2.体会解分式方程验根的必要性。
难点:如何将分式方程转化为整式方程;体会分式方程验根的必要性。
学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。另外在学习本节课之前,已经学习过《解一元一次方程》。对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但估计绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在《分式》这章的后半部。《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习可化为一元二次的分式方程打下了良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。
教学准备:投影仪、各例题的标准解答过程。
教学过程:
一、课堂导入
由课本第87页(即前一节课的内容:根据实际问题列出分式方程,但未求解)产生的方程入手,引入解分式方程的必要性。
二、新课:
例1 解分式方程:
(1) 由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的解法。
[设计意图:课文的第一个例子是:_______,这个例子我估计绝大部分学生会采用交叉相乘(以往教学中学生常常提及)。虽也去掉分母,但学生还没意识到是在两边乘了最简公分母_____,若我自己去解释,又有灌输之嫌。于是我干脆暂时避开此例,自己设计一个例子_____,这样避免了学生采用交叉相乘的方法求解]
[学情预设:由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母的整式方程(如: )相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数的。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点]
(2)引导学生检验刚才求得的解是否是原方程的解。
[设计意图:让学生明白将值代入原方程检验是分式方程验根的'一种方法,另一种方法是直接检验分母是否为0,这种方法将在后面涉及]
[学情预设:学生可将求得的值代入原方程,但书写格式不规范,如有的同学将解直接代入方程两边,却仍用等号将左右两边相连,然后两边同时计算。我计划用投影仪,选择几位同学的做法显示给大家。让大家评选出最好的格式——将解得的根分别代入方程的左右两边计算,看左、右两边的结果是否一致]
[知识链接:对于验证一个值是否是方程的解,在求解一元一次方程时,有进行过相应的训练。绝大多数学生明白可将值代入原方程,但他们往往将值同时代入原方程。
显然,这种书写不够规范。应分别代入两边验证为好]
例2 解方程:
让学生自已求解,解得_____,引入增根的概念。并说明验根除了代入原方程,还可检验各分母是否为0,从而判别是否是增根。
[设计意图:学生不明白为何代入原方程的分母或最简公分母也可验根,我设计此例的目的是让学生明白解分式方程可能会产生让分母为0的根,即增根,自然以后解分式方程要检验了]
[学情预设:在前面学习分式有关内容时,学生对于像_____是相反的关系掌握得很好,可以轻松得出 _____,这样在方程两边同时乘以_____即可。若学生没注意到这个细节,老师可稍加提示]
[知识链接:有了第一个例子,学生已经明白解分式方程的步骤,可以自行解此方程]
例3 解方程:
[设计意图:此题需要学生对分母分解因式,为解最一般的分式方程起示范作用]
[学情预设:有学生直接在方程两边乘以_____。这种方法可以,但繁琐。在学生解完之后,引导他们对在方程两边乘以最简公分母 还是乘以 进行对比。得出较简便的方法]
[知识链接:学生已经学习过分解因式 ___
三、阶段小结:
引导学生总结解分式方程的步骤:
1.在方程的两边同时乘以最简公分母,约去分母,化成整式方程。
2.解这个整式方程。
3.验根_______,引导学生对两种验根方法的优、缺点进行讨论。
[设计意图:梳理一遍解题步骤,解题思路会更清晰]
四、强化练习:
1.完成课本第90页的随堂练习。完成后学生相互交换改卷,查找错误并打分。评分标准由学生在课堂上集体商定。
[设计意图:将小结的知识点内化到学生的知识结构中。简单机械做题,有一定的效果,但效率不高。学生自测,接下去同学互改,能调动学生的积极性。在商量评分标准的过程中,学生自然体会到各个步骤的重要性。这样既完成了强化练习,又提高了学习效率]
八年级数学上册教学计划6
一、教学目标
1、类比分数约分,掌握分式约分方法,熟练进行约分
2、经历从分数的约分到分式的约分的类比探索、归纳过程,明确分式约分的概念和依据。渗透数学中的类比数学思想.
3、在对分式约分的过程中,由繁到简,使学生感受数学的简洁美。
二、重点:如何进行分式约分
难点:分子分母为多项式的分式如何约分
三、教材分析
本节课是冀教版八年级上册第十四章第一节的.第二课时,它是分式基本性质的运用,也是后面学习分时乘除法运算的基础,起着承上启下的的作用
四、学情分析
学生在小学学过了分数的约分,七年级学习了因式分解,上节课又学习了分式的基本性质,这些都是学好分式约分的基础
五、教法学法
自学点拨 小组合作
六、教学过程
一)导入
上节课,我们利用类比思想,由分数认识了分式,由分式的基本性质通过观察、猜想、验证、归纳等环节得到了分式的基本性质,这节课,我们利用分式的基本性质继续探究新知,板书课题:14.1分式(2)约分
【设计意图:通过简单的开场白,使学生注意力集中到课堂上,头脑中马上回想上节课的内容,而且知道了要利用分式的基本性质来探究新知,明确了学习的方向。】
二)知识储备
设计意图:通过第一个小题,使学生回想分数的约分方法,为类比引入分式的约分服务,第二小题的设置是为了让学生回忆因式分解的方法,如果忘记了,旁边给了小贴士,帮助回忆
三)类比引新
【设计意图:课上的检测很重要,但有时由于课上的突发事件而不能完成,看情况而定】
结束语:数学的美无处不在,今天,我们学习了分式的约分,这个由繁到简的过程中,充分展示了数学的简洁美,然我们继续努力,去发现,去体会数学的美吧!
八年级数学上册教学计划7
在每一门课的复习中,不同阶段以不同内容为主,多看课本或多做习题,要掌握好。本文为大家提供了八年级上册数学分式方程教学计划表,希望对大家的学习有一定帮助。
一、教学目标
1.使学生理解分式方程的意义.
2.使学生掌握可化为一元一次方程的分式方程的一般解法.
3.了解解分式方程解的`检验方法.
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
二、教学重点和难点
1.教学重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
2.教学难点:检验分式方程解的原因
3.疑点及分析和解决办法:
解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.
三、教学方法
启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.
四、教学手段:
演示法和同学练习相结合,以练习为主.
五、教学过程
(一)复习引入
1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程.
使方程两边相等的未知数的值,叫做方程的解.
(二)新知探索
板书课题:分式方程的定义.
分母中含有未知数的方程叫分式方程(fractional equation).以前学过的方程都是整式方程.(课件展示)
(三)作业布置
必做:课本82页,习题3.7,A组第1、2题。
选作:课本82页,习题3.7,A组第3题;B组第1题。
八年级数学上册教学计划8
一、学生起点分析
学生的知识基础:学生在七年级上册教材中已经学习过了尺规作图。其中包括理解尺规作图的含义,能完成作一条线段等于已知线段、作一个角等于已知角的基本作图,初步掌握了尺规作图。而对于三角形,它是最简单、最基本的几何图形,学生在生活中随处可见。并且在本章的前4节中学生已经对三角形的有关概念及相关结论有了进一步的学习,如认识三角形、全等三角形、探索三角形全等条件。学生已经初步具备了作三角形的基本知识与技能。
学生的活动经验:在相关知识的学习过程中,学生已经经历了观察、折纸、拼图、画图、想象、推理、交流等活动,发展了空间观念,积累了一些数学活动经验,具备了一定的动手实践与合作交流能力。
二、教学任务分析
在学生现有的知识和活动经验的基础上,提出具体的教学及学习任务:在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形,并能用自己的语言表述作图的过程。学生在本学段完成后会书写“已知、求作和作法”。能结合三角形全等条件与同伴交流作图过程和结果的合理性。为此,本节课的教学目标是:
1.经历尺规作图实践操作过程,训练和提高学生的尺规作图的技能,能根据条件作出三角形。
2.能依据规范作图语言,作出相应的图形,在实践操作过程中,逐步规范作图语言。
3.通过与同伴交流作图过程和结果的合理性,体会对问题的说明要有理有据。
三、教学设计分析
本节课设计了7个环节:情境引入、作三角形、合作分享、基础练习、拓展提高、课堂小结、布置作业。
第一环节 情境引入
活动内容:首先提出“豆豆书上的三角形被墨迹污染了一部分,你能帮他在作业本上画出一个与书上完全一样的三角形吗?”的问题,自然地引发学生思考“如何作一个三角形与已有的三角形一样呢?”与此同时引导学生回顾三角形的基本元素,以及学过的基本作图 ——作一条线段等于已知线段、作一个角等于已知角。学生思考后独立回答。对于两种基本尺规作图,找两名学生板演示范,其他学生在练习本上做。完成后,请学生试着叙述作法,教师规范学生的语言。
活动目的:通过学生处理身边经历过的事情,激发学生学习数学的兴趣,培养学生的善于观察生活,并能从生活中提炼出数学模型的能力。同时对两个基本尺规作图的.复习是为后面的学习做铺垫。自然引出本节课的主要研究内容“如何利用尺规作一个三角形与已知三角形全等呢?”
实际教学效果:学生一开始在问题情境下进行积极思考,思考各种办法进行解决,如:用一张薄纸覆盖在三角形上,描出来未被污染的部分,将污染了一部分的两边延长,两边相交,即恢复成了原来的三角形。提出方案的同时,引导学生考虑方案的可行性。此时,教师与学生一起回顾三角形的基本元素,及尺规的基本作图——作线段、作角。学生能熟练的画一条线段等于已知线段,并用语言描述作图过程。而对于画一个角等于已知角,有些学生作起来稍显困难,需教师重新示范,并说明作图过程。在这一复习过程中,教师对做得好的学生给予鼓励,说明学习知识要扎实,基础打得好后续的学习才会比较容易。
第二环节 作三角形
活动内容:师生共同探索、研究、交流、经历利用尺规作三角形,学生用自己的语言表述作图的过程。本环节学生要按要求完成三个尺规作三角形的内容:
(1) 已知三角形的两角及其夹边,求作这个三角形;(豆豆所求助的三角形) (2) 已知三角形的两边及其夹角,求作这个三角形; (3) 已知三角形的三边,求作这个三角形。
首先,学生在教师的引导下分析、交流作三角形时作边与角的先后顺序,再作所求的三角形。第一个作图教师给出作法,并演示作图过程,让学生进行模仿操作;第二个作图只给出作法,不演示,让学生根据已知步骤独立作出图形;第三个作图让学生自己探索作法,并独立作出图形。学生在每个作图完成后,进一步思考“还有没有其他的作法?”,思考后进行操作,尝试表述作图过程,并组织全班进行交流。再提出“大家画出的三角形是否全等”的问题供学生讨论。
活动目的:本环节通过分析—操作—再分析的形式培养学生分析和解决问题的能力。学生通过经历从模仿、独立完成作图、到探索作图的过程,巩固尺规作图的技能,循序渐进的会书写“已知、求作和作法”。在完成三个作图后,都鼓励学生比较各自所作的三角形,利用重合等直观方式观察所作出的三角形是否全等。在此基础上,还引导学生利用已经获得的三角形全等的条件来说明大家所作出的三角形一定是全等的,即说明作法的合理性。这实际上体现了直观操作与推理的相结合,并从中也使学生意识到这两种方法的不同。
实际教学效果:在教师示范第一个作图之后,学生能够学着模仿分析和操作下面的作图,并且在不断地作一个角等于已知角的过程中,逐渐达到熟练。从而,学生可以自己探索作法,并独立作出图形。在整个过程中,学生的画图要比表述作图过程(即写作法)显得自如,有信心。大多数学生对“用准确的语言描述作图过程”感到有很大的困难。即使这样,也要鼓励学生亲自张嘴说一说,尽他的最大可能描述自己的作图顺序及过程,教师即时地加以引导、完善、规范作图所用的语言。使学生可以很快地自己独立完成作图和作法。本环节注意模仿与自主学习的相结合,给学生一个展示自己思维的平台。
学生在完成每一个作图后,都要思考“依据给出的条件作出的三角形会全等吗?”学生能够很好地根据刚刚学过的三角形全等的判别方法中的“ASA”、“SAS”和“SSS”来进行说明,从中体会做法的合理性以及直观操作与推理的相结合。
第三环节 合作分享
活动内容:以4人合作小组为单位,根据问题开展活动。
问题(1)你都知道有哪些常用的作图语言可以用于描述作图过程(即作法)?
问题(2)我们是如何分析作图题的?它的步骤是什么?
活动目的:学生通过前一环节的实践操作,已经有了一定的作图经验。在此基础上提出这两个问题是为了让学生对刚刚的作图过程进行回顾、总结,培养学生善于思考,善于归纳数学方法的能力,并加强学生的语言表达能力。这一环节无论是对已完成的实践操作,还是下面的实战练习都起到至关重要的作用——承上启下。
实际教学效果:各合作小组成员在已有的作图经验基础上积极参与,各抒己见,尽可能多的挖掘作图语言和详细的分析步骤,一派紊而不乱的讨论气氛。最后各小组把自己的研究成果在全班进行展示,与大家分享。在分享的同时全班进行交流,取长补短,使语言更加规范、精练。达到集思广益、互帮互助的教学效果。
八年级数学上册教学计划9
设计理念
根据基础教育课程的具体目标,结合学习是学习者主动建构知识的过程的建构主义理论,把握学生的独立探索与教师的引导支持之间的辩证关系。教学中,给予学生充足的时间习参与学习活动,进行多向、充分的探索交流,关注学生学习兴趣的养成,让学生在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度和价值观。
教材分析
本节内容选于《义务教育课程标准实验教科书—数学》(北师大版)八年级(下)第四章第3节,本章在已学习“全等图形”和“线段的比”的基础上,以认识形状相同的图形(相似图形)为核心内容,为下一节课学习“相似多边形”作好准备。在本节课的学习过程中,经历利用坐标的变化放大(或缩小)图形,进一步发展学生数形结合意识;利用橡皮筋近似放大图形,让学生体会相似图形在现实中的应用,进一步增强学生的数学应用意识。本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。
学生分析
(1)学生已初步学习了全等三角形、平面直角坐标系和线段的比等基本知识; (2)这个年龄阶段的学生有很强的好奇心,并且有较强的观察能力,因而教学过程中尽可能多给学生表现的机会,激发学生探究意识。
资源分析
本节课利用“Z+Z智能教育平台”教学。 《超级画板》可演示利用橡皮筋近似放大图形的过程,并可以让学生在观看演示的过程中感知位似比; 《三角函数》新世纪版可演示利用坐标变化放大(或缩小)图形的过程,并可以改变平面直角坐标系的单位长度来放大(或缩小)图形,有利于学生的探究讨论。
教学目标
(1)知识与技能:感知相似图形在现实中的应用,认识形状相同的图形,感悟形状相同图形的基本含义;
(2)过程与方法:经历观察、操作、了解相似图形的过程,进一步了解形状相同图形在实际生活中的应用,掌握简单的画图方法并认识形状相同的图形;
(3)情感与能力:经历自主探究、合作交流等学习方式的学习及激励评价,让学生在学习中锻炼能力,培养良好的情感、态度和价值观。
教学重点
(1)认识形状相同的图形;
(2)利用坐标的变化放大(或缩小)图形。 教学难点 画图,利用橡皮筋放大图形。
教学流程
一、创设情境导入新课
课件演示课本P102的内容,并提出问题: ⑴用同一张底片洗出的不同尺寸的照片中,人物的形状改变了吗? ⑵两个足球的形状相同吗?它们的大小呢? ⑶两个正方体的形状相同吗? ⑷复印纸上对应图形之间分别有什么关系?
由学生独立思考完成,认识形状相同的图形。 导入课题:形状相同的图形。
二、直观感知探索新知
1、看一看 如图,哪些图形是形状相同的图形?
由学生观察完成,加强对形状相同图形的认识。
2、想一想 下列图形中,形状一定相同的有( )。 A。两个半径不等的圆 B。所有的`等边三角形 C。所有的正方形 D。所有的正六边形 E。所有的等腰三角形 F。所有的等腰梯形 说明:本例让学生认识数学学习中的形状相同的图形,感悟形状相同图形的基本含义。
3、议一议 生活中存在大量形状相同的图形,试举出几例。
说明:本例让学生感悟实际生活中形状相同的图形,应让学生充分的思考与合作交流。
三、合作交流引申探究
1、练一练 课本P105的随堂练习: 在直角坐标系中描出点 O(0,0)、A(1,2)、B(2,4)、C(3,2)、D(4,0)。先用线段顺次连接点O、A、B、C、D,然后再用线段连接A、C两点。 ⑴你得到了一个什么图形? ⑵分别填写表1、2、3、4,你有的到了什么图形? ⑶在上述得到的四个图形中,哪些图形与原图形形状相同?
说明:本例是通利用坐标变化放大(或缩小)图形。在教学过程中,可先让学生在“Z+Z”中演示,得到感性认识,增强学生的学习兴趣。
2、议一议 根据随堂练习,请思考:一个图形各点的坐标经过怎样的变化,使所得到的图形与原图形形状相同?
说明:让学生独立思考、合作交流完成本题,使学生对利用坐标变化放大(或缩小)图形达到感性认识。
3、想一想 下列图形是在原图形的基础上做了哪些变化,变化后的图形和原图形形状相同吗?
说明:让学生认识到经历平移、旋转、轴对称变化前后的两个图形是形状相同的图形
4、做一做 课本P104的做一做: 利用下面的方法可以近似地将一个图形放大: ⑴将2根长短相同的橡皮筋系在一起,联结处形成一个结点; ⑵画一个自己喜爱的图形,在图形外取一个定点; ⑶将系在一起的橡皮筋的一端固定在定点,把一枝铅笔固定在橡皮筋的另一端; ⑷拉动铅笔,使结点沿所画图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形。 这个新的图形与已知图形形状相同。
注:应给学生足够的时间探索完成图形,并利用“Z+Z”展示画图过程,让学生感知位似比,为第9节“图形的放大与缩小”的学习打下基础。
四、归纳小结激励评价 学生总结本节课学习的主要内容及收获;
五、布置作业
1、课本P106 习题4。4 1,2,3; 2、继续进行课本P104“做一做”的活动; 3、写一篇本节课的学习日记。
说明:通过课外活动复习本节课的知识内容,激发学生探究形状相同图形的兴趣,体会数学学习在生活中的应用。
八年级数学上册教学计划10
一、指导思想
通过数学教学,学生可以学到现代化和进一步学习现代科学技术所必需的数学基础知识和技能;应努力培养学生的计算能力、逻辑思维能力以及分析和解决问题的能力。
二、学术状况分析
八年级是初中学习过程中的关键时期,学生的基础直接影响到以后能否上学。这个班刚接手,不认识班里的同学。我从以前的老师那里了解到,有天赋的学生不多,但是后进生很多,少数学生不上进,基础差,问题严重。为了在这一时期取得理想的效果,教师和学生都应该努力检查和弥补差距,充分发挥学生作为学习的主体和教师作为教学的主体,注重方法和能力的培养。
三.教材分析
第二章
全等三角形主要介绍了三角形同余的性质、判断方法以及直角三角形同余的特殊条件。更加注重学生推理意识的建立和对推理过程的理解。学生在直观理解和简单说明原因的基础上,严格证明全等三角形的一些性质,从几个基本事实出发,探索三角形全等的条件。
第十二章
轴对称性是基于已有的生活经验和初步的数学活动经验,从观察生活中的轴对称现象出发,从整体的.角度直观地认识和总结轴对称的特征;通过对角、线段、等腰三角形等简单轴对称图形的逐步分析,引入了等腰三角形的性质和判定的概念。
第十三章实数。从平方根和立方根开始,学习一些关于实数的知识,利用这些知识解决一些实际问题。
第十四章
一阶函数通过对变量的考察,可以了解函数的概念,进一步研究一个最简单的函数,即一阶函数33543354。了解函数的相关性质和研究方法,初步形成从函数的角度认识现实世界的意识和能力。在教材中,通过反映“问题情境————建立数学模型——3354概念、规律、应用、拓展”的模式,让学生从实际问题情境中抽象出函数、初等函数的概念,探究初等函数及其图像的性质,最终利用初等函数及其图像解决相关实际问题。同时,在教学顺序上,将比例函数纳入线性函数的学习。教材注重新旧知识的对比和联系。比如教科书中,加强了线性函数、线性方程、线性不等式之间的联系。
第十五章
代数表达式力求在形式上突出:代数表达式和代数表达式运算的实践背景,使学生体验到“符号化”实际问题的过程,培养出符号感;在探索算法的过程中,为探索算法设置了归纳、类比等活动。理解数学,掌握基本操作技能
四、教学措施
1、课堂教学与实践相结合,根据及时反馈的信息,排除学习障碍。
2.认真备课,认真授课,把握课堂45分钟,努力提高教学效果。
3.抓住重点,分散难点,突出重点,努力培养学生能力。
4.不断改进教学方法,提高专业素质。
5.在教学中注重自主学习、合作学习和探究学习。
五.教学进度
略
八年级数学上册教学计划11
教学目标:
(1)理解通分的意义,理解最简公分母的意义;
(2)掌握分式的通分法则,能熟练掌握通分运算。
教学重点:分式通分的理解和掌握。
教学难点:分式通分中最简公分母的确定。
教学工具:投影仪
教学方法:启发式、讨论式
教学过程:
(一)引入
(1)如何计算:
由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。
(2)如何计算:
(3)何计算:
引导学生思考,猜想如何求解?
(二)新课
1、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的最简公分母.
通常取各分母的所有因式的'最高次幂的积作最简公分母,这样的公分母叫做最简公分母.
根据分式通分和最简公分母的定义,将分式 , , 通分:
最简公分母为: ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下:
通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。
(三)课堂小结
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
八年级数学上册教学计划12
一、教材分析:
第十一章 三角形
本章主要学习与三角形有关的线段、角及多边形的内角和等内容。
本章重点:三角形有关线段、角及多边形的内角和的性质与应用。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。
第十二章 全等三角形
本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。
教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。
教学难点:领会证明的分析思路、学会运用综合法证明的格式。
第十三章 轴对称
本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。
教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。
教学难点:轴对称性质的应用。
第十四章 整式的乘法和因式分解
本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。
教学重点:整式的乘除运算以及因式分解。
教学难点:对多项式进行因式分解及其思路。
第十五章 分式
本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。
教学重点:运用分式的基本性质进行约分和通分;分式的'基本运算;解分式方程。教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。
二、学情分析:
从上学期的期末考试来看,学生的普遍成绩趋于中下游,数学基础一般,基础知识掌握不牢固,在错题难题方面更显能力不足,班级数学学习积极性差,数学作业完成质量低,数学提升空间很大。根据以往的经验,学生在广泛的深入的理解基础上使知识在各个方面建立起有机的联系,是最不容易忘记的,但现在的要求中,学生在这方面还是有所缺失的。最令担心的是班级中的差生的学习,无论如何要尽可能的使他们跟上班级体整体前进的步伐。在学习能力上,学生课外主动获取知识的能力有所进步,前一学期鼓动孩子们去买自己喜欢的参考书,通过自己的努力,一部分孩子的数学有了较为显著的提高,本学期也要继续鼓励有条件的孩子拓宽自己的知识视野,使孩子们在这个初中阶段这个最重要的一年里能更上一层楼。
三、教学目标:
1、知识与技能目标
学生通过三角形、掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。
2、过程与方法目标
本学期针对不同的情况,根据学生的掌握的情况及教材的地位与作用采用比较灵活的教学方法,主要采用启发式教学,以激起学生的学习知识的积极性,培养学生的独立思考、自学能力为主,主要有:
1、学生猜想与学生动手操作相结合。
2、学生独立思考与教师指导相结合。
3、理论与实际相结合。
4、面向全体学生与照顾个别相结合。
5、组织练习与成绩考查相结合。
3、情感与态度目标
通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。
四、教学措施:
1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好。
2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。
3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。
4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。
5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。
6、成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。
7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。
八年级数学上册教学计划13
多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!
一、内容和内容解析
本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。
勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。
学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。
本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证
二、教学目标及目标解析
1、教学目标
①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。
②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。
④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。
2、目标解析
①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。
②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的'方法。
③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。
④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。
三、教学问题诊断分析
学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。
对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。
四、教学支持条件分析
根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.
五、教学过程设计
(一)创设情境,导入新课。
问题1:请同学们欣赏20xx年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)
教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。
【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.
方案1:如果学生能够说出勾股定理的相关知识,则直接
进入下一环节的学习。
方案2:如果学生有困难,则安排学生自学教材,再发表意见。
学生发言,教师倾听。视学生回答的重点 板书 :勾三股四弦五 等
【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。
(二)观察演算,合作探究,初具概念
问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系? (故事附后)
教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。
【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。
问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。
教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)
【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。
问题5:你是怎样演算的?
教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。
视学生的学习情况确定下步的教学:
方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。
方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。
【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。
问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。
学生描述,教师板书。
【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察---探究---整理----归纳的数学方法,体验学习的成功。
(三)引导实验,探究论证,形成体系。
问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。
教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。
【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。
问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。
学生或小组间进行合作实验,共同协作探究;教师巡视指导。
【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。
问题9:教师选取代表性的拼接方法,全班展示。
【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。
(四)归纳提高,巩固运用,形成能力。
问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?
学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。
【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。
问题11:完成以下练习题
教材69页第1题、
学生独立完成;教师巡视指导,板书得数,介绍勾股数。
【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。
(五)归纳小结,反思提高
问题12:通过本节课的学习,你有哪些收获?
学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。
【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。
小编为大家提供的八年级上册数学勾股定理教学计划大家仔细阅读了吗?最后祝同学们学习进步。
八年级数学上册教学计划14
一、教学目标
1.了解二次根式的意义;
2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3. 掌握二次根式的性质 和 ,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.
二、教学重点和难点
重点:(1)二次根的意义;(2)二次根式中字母的取值范围.
难点:确定二次根式中字母的.取值范围.
三、教学方法
启发式、讲练结合.
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义: 式子 叫做二次根式.
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.
例1 当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略.
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式.
(2)-3x≥0,x≤0,即x≤0时, 是二次根式.
(3) ,且x≠0,∴x>0,当x>0时, 是二次根式.
(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式.
例4 下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.
解:(1)由2a+3≥0,得 .
(2)由 ,得3a-1>0,解得 .
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.
(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
八年级数学上册教学计划15
一、学生情况分析:
本学期我教八年级35,36班的数学。上期末数学考试两班的最高分都为100分,最低分9分,平均分35班85.7分,36班83.6分。总体上看,学生的数学成绩中等,在学生的数学知识上看,基本概念,基本计算,以及基本的空间与图形知识都有所欠缺;数学的思维有些混乱;独立思考问题较差,大部分学生对数学兴趣较高。
二、教材分析:
1、体系结构:
(1)数学内容的引入,采取从实际问题情景境入手的方式,贴近学生的生活实际,选择具有现实背景的素材,建立数学模型,使学生通过问题解决的过程,获得数学概念,掌握解决数学问题的技能和方法。
(2)教材内容的呈现,努力创设学生自主探究的学习情况和机会,适当编排应用性、探索性和开放性的,发挥学生的主动性、留给学生充分的时间与空间,自主探索、促进学生数学思维能力、创造能力的培养与提高,为学生的终身可持续发展奠定良好的基础。
(3)教材内容的编写,把握课程标准,同时又具有弹性,编入一些选学内容,以适应较高程度学生学习的需要,使不同水平的学生都得到发展。
(4)教材内容的叙述、行当介绍数学内容的背景知识与数学史料等,将背景材料与数学内容融为一体,激发学生学习数学的兴趣,引导学生体会数学的文化价值。
(5)现代信息技术的应用在教材中占有适当地位,有利于学生理解概念、自主探索、实践体验。
2、教材体例。
(1)教材的正文中,根据教材内容的实际需要,适当设置了一些相应的`栏目。如“观察”、“思考”、“实验”、“想一想”、“试一试”、“做一做”等,给学生适当的思考空间,让学生通过自主探索,获得体验和感受,掌握必要的知识。
(2)结合教材各块内容,安排一些有关的阅读材料,涉及数学史料、数学家故事、实际生活中的问题、数学趣题、知识背景等,扩大学生的知识面,增强学生的应用意识和对数学的兴趣,对学生进行爱国主义和人文主义精神教育。
(3)控制习题总量,降低难度,增加探索、开放、实践类型的习题,按照不同的要求,编制不同水平的练习题,按课时给出随堂练习,每一节设置习题,每章的复习题设程度不一的A、B、C、三组,以满足不同层次的学生的发展需要。
(4)增强了研究性课题学习,给学生更多的发展空间,让学生自己动手,提高解决问题与合作交流的能力。
(5)每一章的开始,设置有展现该章主要内容的导图与导入语,以期激发学生的学习兴趣与求知欲。
三、教学方法及措施:
让学生明确学习目的、端正学习态度,给学生以理想前途教育,培养学生对数学学科的学习兴趣,教给学生学习方法,多与学生勾通,多和学生一起分析问题,培养学生解决问题能力。深入钻研教育教法,精心备课,精心设计教学环节,习题降低教学坡度和教学难度,认真反思自己的教育教学过程。
四、培优、转差措施:
根据学生的不同基础情况分别给予学生不同教学要求,按学生的不同基础布置不同的作业,因材施教。多与差生交流,与差生交朋友,分析差生差的原因,给差生以信心和关心,尽量给差生降低学生上的坡度;对于优生教师利用课余时间拓宽学生知识面,培养学生分析问题解决问题能力。在教学中适当对知识进行拓展,给优生以充分思索的空间,多让优生自主探索,鼓励优生合作交流。
【八年级数学上册教学计划】相关文章:
八年级上册的数学教学计划02-10
数学八年级上册教学计划05-23
八年级上册数学教学计划05-16
八年级上册数学教学计划11-10
人教版八年级上册数学教学计划07-14
八年级上册数学教学计划(通用)05-28
八年级数学上册教学计划11-07
人教版八年级上册数学教学计划11-18
八年级上册数学教学计划范文12-24