当前位置:9136范文网>教育范文>教学计划>高三数学教学计划

高三数学教学计划

时间:2024-10-24 07:32:40 教学计划 我要投稿

高三数学教学计划汇总【2篇】

  时间的脚步是无声的,它在不经意间流逝,又将迎来新的工作,新的挑战,我们要好好计划今后的学习,制定一份计划了。那么计划怎么拟定才能发挥它最大的作用呢?下面是小编收集整理的高三数学教学计划,仅供参考,希望能够帮助到大家。

高三数学教学计划汇总【2篇】

高三数学教学计划1

  一、总的情况

  43班共有学生46人,49班共有学生46人。相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形

  二、教学设想

  (一)、体现数学学科特点,注重知识能力的提高,提升综合解题能力

  1、加强解题教学,使学生在解题探究中提高能力。

  2、注重联系实际,要从解决数学实际问题的角度提升学生的综合能力。

  (二)、合理安排复习中讲、练、评、辅的时间

  1、精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战”

  2、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果

  3、注重实效,努力提高复习教学的效率和效益

  (三)、改变传统复习模式,体现小组交流合作

  1、淡化各自为战,加强备课小组交流合作,资源共享。

  2、坚持学生主题,教师主导。

  3、注重学法指导及心理辅导

  (1)及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。

  (2)针对不同学生的实际水平,合理安排教学难度,有利于学生成功情感体验,促进其提高。

  (四)、第二、三轮复习穿插进行

  三、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持集体备课,加强学习,多听课,探索第二轮复习的教学模式。

  3、脚踏实地抓落实

  (1)当日内容,当日消化,加强每天必要的练习检查督促。

  (2)坚持每周一次小题训练,每周一次综合训练。

  (3)周练与综合训练,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的.考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  4、加强应试心理的指导

  为学生减压,开启他们心灵之窗,使他们保持最佳状态。

  5、对重点知识与重点方法要真正理解,并且理解准、透。如概念复习要作到:灵活用好概念的内涵和外延,分清容易混淆的概念间的细微差别,提防误用或错用;

  全面准确把握好所用概念的前提条件;

  熟练掌握表示有关概念的字符、记号。

  第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到:

  ①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对“减缩思维”的要求。

  ②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。

  ③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。

  最后,就是冲刺阶段,也称为“备考篇”。将复习的主动权交给学生。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,这阶段要求学生直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并要求学生做到:

  ①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施;

  锁定重中之重,掌握最重要的知识到炉火纯青的地步。

  ②抓思维易错点,注重典型题型。

  ③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。

  ④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。

  ⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考

高三数学教学计划2

  (一) 创设情景,引入新课

  (借助多媒体)给出一张王小丫的图片(学生情绪高涨),大家都知道王小丫是cctv-2“开心词典”的栏目主持人,下面王小丫给大家出题啦!

  观察下列各数列,并填空,然后总结它们有什么共同的特点?具有什么性质?你能给它们起个名字吗?

  ①1,2,3,4,5,6,7,8, ,…

  ②3,6,9,12,15, ,21,24,…

  ③-1,-3,-5,-7,-9,-11, ,-15,…

  ④2,2,2,2,2,2, ,2,2,…

  设计思路:1.通过几个具体的等差数列,为学习新知识创设问题情境,激发学生的求知欲。2.由学生观察数列特点,初步认识等差数列的特征,为后面引出等差数列的概念学习建立基础。3.学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。4.对问题的总结可以培养学生由具体到抽象、由特殊到一般的认知能力。5.按照“观察--猜想--证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。

  (二) 启发诱导、探求新知

  1、由学生的总结自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。

  思考并交流对概念的理解,并总结:

  ①“从第二项起”满足条件;

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

  (n≥1)

  同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1). 9 ,8,7,6,5,4,……;√ d=-1

  2). 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3). 0,0,0,0,0,0,…….; √ d=0

  4). 1,2,3,2,3,4,……;×

  5). 1,0,1,0,1,……×

  其中第一个数列公差d0,第三个数列公差d=0

  由此强调:公差可以是正数、负数,也可以是0

  2、第二个重点部分为等差数列的通项公式

  (1)若一等差数列{an}的首项是,公差是d,则据其定义可得:

  a2-a1=d 即:a2=a1+d

  a3-a2=d 即:a3=a2+d

  ……

  猜想:

  a40= a1+39d

  进而归纳出等差数列的通项公式:

  an=a1+(n-1)d

  设计思路:在归纳等差数列通项公式中,我采用讨论式的`教学方法。给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。通过总结的通项公式由学生猜想的通项公式,进而归纳 的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。

  (2)此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——迭加法:

  a2-a1=d

  a3=a2+d

  ……

  an-an-1=d 将这n-1个等式左右两边分别相加,就可以得到 an–a1= (n-1) d即an=a1+(n-1) d ,当n=1时,此式也成立,所以对一切n∈n﹡,上面的公式都成立,因此它就是等差数列{an }的通项公式。

  在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n-1个等式。将n-1个等式相加,证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求。

  (三)巩固新知应用例解

  例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项

  (2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

  例2 在等差数列{an}中,已知a5=10, a20=31,求首项与公差d。

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的三个量已知时,可根据该公式求出第四个量。

  例3 梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。

  (四)反馈练习

  1、课后的练习中的第1题和第2题(要求学生在规定时间内完成)。

  目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、课后习题第3题和第4题。

  目的:对学生加强建模思想训练。

  (五)归纳小结、深化目标

  1.等差数列的概念及数学表达式an-an-1=d (n≥1)。

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

  2.等差数列的通项公式会知三求一。

  3.用“数学建模”思想方法解决实际问题。

  (六)布置作业

  必做题:课本习题第2,6 题

  选做题:已知等差数列{an}的首项= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

【高三数学教学计划】相关文章:

高三数学教学计划04-28

高三理科数学教学计划11-21

数学高三教学计划04-17

高三数学教学计划15篇12-17

高三数学教学计划(精选15篇)02-02

高三数学教学计划(15篇)12-20

高三数学教学计划 15篇02-21

高三数学教学计划精选15篇03-04

高三学期教学计划数学10-28

高三数学下学期教学计划06-16