当前位置:9136范文网>教育范文>教学设计>方程的意义教学设计 方程的意义教学内容分析

方程的意义教学设计 方程的意义教学内容分析

时间:2022-06-09 11:36:59 教学设计 我要投稿
  • 相关推荐

方程的意义教学设计4篇 方程的意义教学内容分析

  在教学工作者开展教学活动前,总归要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。我们应该怎么写教学设计呢?以下是小编为大家收集的方程的意义教学设计4篇 方程的意义教学内容分析,仅供参考,大家一起来看看吧。

方程的意义教学设计4篇 方程的意义教学内容分析

方程的意义教学设计4篇 方程的意义教学内容分析1

  教学目标:

  1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

  2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

  教学重点:

  理解等式的性质,理解方程的意义。

  教学难点:

  利用等式性质和方程的意义列出方程。

  教学准备:

  多媒体课件

  教学过程:

  一、情景引入

  1、出示天平。

  知道这是什么吗?你知道它是按照什么原理制造的吗?

  说说你的`想法。

  如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

  二、教学新课

  1、教学例1。

  (1)出示例1图。

  你会用等式表示天平两边物体的质量关系吗?把它写出来。

  50+50=100(板书)

  说说你是怎样想的?

  (2)指出等式的左边,等式的右边等概念。

  等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

  能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

  2、教学例2。

  (1)出示例2图。

  天平往哪一边下垂说明什么?(哪一边物体的质量多)

  你能用式子表示天平两边物体的质量关系吗?

  学生独立完成填写,集体汇报。

  板书:X+50>100 X+50=150

  X+50<200 X+X=200

  如果让你把这四个式子分类,应分为几类?为什么?

  指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

  知道像X+50=100,X+X=100这样的等式叫什么吗?(方程)

  说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

  (2)讨论:等式与方程有什么关系?

  小组讨论。

  指出:方程一定是等式,但等式不一定是方程。

  方程是特殊的等式。他们的关系可以用集合圈表示。

  3、教学“试一试”。

  独立完成,完成后汇报方法。

  让学生说一说,每题中的方程哪个更简洁一些?

  指出:像500÷2=X,20-12=X虽然也是方程,但在列方程时应尽量避免这样X单独在等号左边或右边的方法。

  4、完成“练一练。

  (1)完成第1题。

  独立完成判断后说说想法。

  (2)完成第2题。

  (3)完成第3题。

  交流所列方程,说说你为什么这样列?你是怎么想的?

  三、巩固练习

  1、完成练习一第1题。

  能说说每个线段表示的意思吗?方程怎样列呢?

  小组中交流列式。

  2、完成练习一第2题。

  理解题意,说说数量关系是怎样的?

  列出方程并交流。

  3、完成练习一第3题。

  四、课堂总结

  通过学习,你有哪些收获?

  板书设计:

  方程

  等式50+50=100 X+50>100 X+50=150

  方程X+50<200 X+X=200

方程的意义教学设计4篇 方程的意义教学内容分析2

  知识与技能:

  使学生通过活动初步理解方程的意义,知道方程与等式的关系,能正确判断方程。

  过程与方法:

  使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受方程的方法及价值,培养学生的观察、描述、分类、抽象、概括和应用能力,发展抽象思维能力和符号感。

  情感态度与价值观:

  让学生获得成功的体验,建立学好数学的信心,激发学习数学的兴趣。

  教学方法:

  合作探索,小组交流、观察、分析、概括等方法

  教学过程:

  (一)创设情境,激发兴趣。

  师:同学们,认识它吗?(出示天平)它是用来干什么的呢?然后说明天平用途和原理。

  (二)观察现象,抽象概括

  1.平衡现象数量关系的抽象概括。

  师:我这里有2个25克的果冻,把它们放在天平的左边,右边再放一个质量为50克的砝码,天平怎么样了?

  师:你能用一个数学式子表示你看到的现象吗?(生:25+25=50或25×2=50。)

  师:用这个简单的式子就能表示天平的这种平衡状况,那么左边表示的是什么?右边表示的又是什么?

  2.不平衡到平衡现象数量关系的抽象概括

  师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?

  师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻

  这边加150克砝码,观察天平平衡了吗?

  师:左边盘中物体质量的可以怎样表示?(生:X+150)

  师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)

  师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的左边怎样表示呢?

  师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)

  3.不确定现象数量关系的抽象概括

  师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?

  师:现在请一位同学将这瓶矿泉水喝掉一些,谁来?(请一位同学喝)

  师:这瓶矿泉水被喝掉了多少克?(生:不知道)

  师:可用什么来表示喝了的克数?(生:用X来表示喝了的.克数,即X克)

  师:这瓶矿泉水剩下的质量可以怎样表示?[生:(380-X)克]

  师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)

  (三)观察分类,抽象概念

  1.观察分类。

  师:大屏幕上出现的这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的方式进行分类。(自主学习)

  2.展示分类。

  ①交流分类情况,说明分类理由。

  ②揭示“等式”与“不等式”的概念

  师:像这样的含有等号的式子,数学上称之为等式。像这些含有不等号的式子,我们都称之为不等式。(课件出示相应的分法。)

  3.抽象概念

  师:请同学们仔细观察这些等式,它们有什么不同?

  师:这些等式中的字母表示“未知数”,像这些“X+100=

  含有未知数的等式,称之为方程。这就是我们今天学习的内容。(板书课题)

  师:谁来说说什么是方程?(板书:含有未知数的等式叫方程)

  (四)应用新知,加深理解

  1.判断下列式子是不是方程。

  2.创作方程。

  3.问题质疑,揭示方程与等式的关系。

  ①含有未知数的式子是方程?

  ②“方程一定是等式,等也一定是方程?

  (五),巩固练习。

  师:说说你这节课有什么收获,你还想学习有关方程的什么内容。

  师:我们一起来应用今天所学的知识吧!

方程的意义教学设计4篇 方程的意义教学内容分析3

  教学内容:

  教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

  教学目标:

  理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

  教学重点:

  理解并掌握方程的意义。

  教学难点:

  会列方程表示数量关系。

  教学过程:

  一、教学例1

  1.出示例1的天平图,让学生观察。

  提问:图中画的是什么?从图中能知道些什么?想到什么?

  2.引导

  (1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

  (2)如果学生能主动列出等式,告诉学生:像50+50=100这样的式子是等式,并让学生说说这个等式表示的'意思;如果学生不能列出等式,则可提出你会用等式表示天平两边物体的质量关系吗?

  二、教学例2

  1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

  2.引导:告诉学生这些式子中的X都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

  3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

  三、完成练一练

  1.下面的式子哪些是等式?哪些是方程?

  2.将每个算式中用图形表示的未知数改写成字母。

  四、巩固练习

  1.完成练习一第1题

  先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用X表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数X的等式。

  2.完成练习一第2题

  五、小结

  今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

  六、作业

  完成补充习题

  板书设计:

  方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式叫做方程

方程的意义教学设计4篇 方程的意义教学内容分析4

  教学内容:

  苏教版四年级(第八册)

  教学目标:

  (1)使学生理解方程概念,感受方程思想,方程的意义。

  (2)经历从生活情景到方程模型的建构过程。

  (3)培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学过程:

  一、创设情景,抽象数学模式。

  1.出示实物天平。

  (实物天平比较小,用屏幕上的天平来模拟实验。)

  2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢?(说明两边的重量可能有三种不同的关系。)

  用式子描述重量之间的相等关系。

  3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?

  用式子表示两队比分的关系。

  红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了?分,请你猜一猜,两队的情况会怎样呢?

  用式子来表示比分的三种关系,小学数学教案《方程的`意义》。

  4.创设四个情景。

  (1)每个情景中数量之间有什么关系?

  (2)你能用关系式清晰地来描述吗?

  二、引导分类,概括方程概念。

  刚才我们对情景的描述得到了很多式子。

  200+200=<2318+?<2318+2318+?=23

  280><4?25+?=7022y+720=1050

  1.学生尝试第一次分类。

  可能有几种不同的分法。

  (1)看是否是等式。

  (2)看是否含有未知数。

  ……

  2.学生尝试第二次分类。

  得到四组不同的式子。

  3.描述每一组的特征。

  4.引导概括方程概念。

  含有未知数的等式叫方程。

  三、抓等量关系,体会方程本质。

  1.演示动态平衡。有等量关系,能用方程表示

  2.出示情景(没有等量关系,不能用方程表示。)

  出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)

  3.通过今天这节课,你学到了什么呢?

  四、联系实际,应用与拓展。

  1.周老师从无锡到徐州来上课。

  (1)线段图。

  (2)我乘火车从无锡站开出,每小时行?千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。

  (3)到了徐州站,我买了3枝圆珠笔,每枝?元,付出20元,找回2元。

  2.情景图。

  本届奥运会上,中国台北队获得了?枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。”

  3.开放题。

  小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多?(用方程表示)

【方程的意义教学设计 方程的意义教学内容分析】相关文章:

《方程意义》教学设计04-05

方程的意义的教学反思12-22

方程意义教学反思02-21

《方程的意义》教学反思10-03

方程的意义教学反思09-22

数学方程的意义教学反思02-28

《方程的意义》教学反思15篇12-23

方程的意义教学反思15篇02-14

《方程的意义》教学反思(15篇)02-21