当前位置:9136范文网>教育范文>教学设计>体积的教学设计

体积的教学设计

时间:2024-10-30 07:43:09 教学设计 我要投稿

体积的教学设计

  作为一名教职工,编写教学设计是必不可少的,教学设计是实现教学目标的计划性和决策性活动。我们应该怎么写教学设计呢?以下是小编整理的体积的教学设计,欢迎阅读与收藏。

体积的教学设计

体积的教学设计1

  一、说教材

  《体积与容积》是北师大版五年级下册第41-42页的内容,是在学生已经认识了长方体和正方体的特点的基础上,学习了长方体和正方体的表面积计算之后的教学内容,《体积与容积》是学生进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。

  二、说教法:在教学中,我积极引导学生通过观察、操作,让学生手、眼、脑、口并用,调动多种感官参与学习,丰富学生的感性认识。建立有关体积和容积的正确表象,从而切实掌握所学的知识,为以后的进一步学习作好铺垫。

  三、说学法:

  学生自主探索、发现,小组交流

  四、说教学目标:

  1.知识与技能

  通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2过程与方法.

  在操作、交流中,感受物体体积的大小、发展空间观念。

  3.情感、态度与价值观

  增强学生的合作精神和喜爱数学的情感。

  五、说教学重点、难点

  重点:初步理解体积和容积的概念,以及它们的联系和区别。

  难点:建立体积和容积的表象。

  突破方法:通过演示,引导学生观察,使体积和容积的意义变得直观,容易理解。通过直观的比较使学生理解体积与容积的区别与联系。

  六、说教具

  两个量杯、两个大小不同的水杯、形状不同的石块、小正方体、水。有关课件、茶叶罐,可乐瓶等容器。

  七、说教学过程

  (一)质疑导入

  出示课件乌鸦喝水动画视频。

  师:看完了动画片,谁能说说乌鸦为什么能喝到水呢?水面为什么会上涨呢?是不是原来的水增加了?

  根据学生的回答引导学生概括出:小石子占了一定的空间。

  (二)探究新知

  1、初步感知,物体所占空间有大小。

  师: 我们周围所有的物体都占有一定的空间,只不过有的占的空间大,有的占的空间小。例如,课桌占的空间大,墨水瓶占得空间小;我占的空间大,粉笔头占的空间小;教室占的空间大,黑板擦占的空间小。你能这样的对比着举几个例子说一说吗?(同桌互说)

  (设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动做好铺垫。)

  2、提出问题,讨论解决方法。

  出示两块形状不同的石块,(一块扁状,一块球形的)谁占的空间大呢?,(1)学生观察并独立思考。

  (2)指名说说看法。

  师:看来,只凭观察我们无法判断谁占的空间大,谁占的空间小了。那你能不能想想办法,看看究竟谁占的空间大呢?

  (设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。)

  3、观察实验,感知体积的意义。

  演示:将两块石头放入两个装有同样多水的杯子里。

  师:说说你有什么发现?

  生口答后,师追问:

  师:水面为什么会升高呢?上升的高度一样吗?说明了什么问题?

  学生自由发表意见

  引导生理解:两块石块在量杯中都会占一定的空间。所占的空间大,水面上升的就高;所占空间小,水面上升的就少。

  从而揭示课题:物体所占空间的大小,叫作物体的体积。(同时出示课件)

  现在你能用“体积”这个词来分别说说课桌、墨水瓶、教室和黑板擦吗?如:课桌墨水瓶比,课桌的体积大,墨水瓶的体积小。。。。。。

  (设计意图:在活动中,学生深刻地感受到物体占有一定的空间,而且所占有空间的大小不同。学生经历了实验、观察、交流等探究过程,感知了体积的实际含义。)

  4、认识容积。

  师:今天老师带来了这么多的物品,都可以用来装东西。如:可乐瓶,茶叶罐,水杯,胶水瓶,

  像量杯、纸箱、可乐瓶,茶叶罐这样能装其它东西的物体叫容器。你还知道哪些容器?哪些容器装的东西多,哪些容器装的东西少?(学生例举生活中的容器。)

  出示两个大小不同的装满水的水杯,问:哪个水杯装的水多?

  引导学生认识:两个杯子所能容纳物体的大小是不同的。

  揭示:容器所容纳物体的体积,叫作这个容器的容积。

  师:杯子里装满水,水的体积就是这个杯子的`容积,茶叶罐装满茶叶,茶叶的体积就是这罐子的容积。

  5、区别体积和容积。

  出示:用来装小正方体的塑料盒和正方体教具。

  师:谁能指出这两个物体的体积和容积呢?

  交流中使学生明白:这两物体体积相同,但正方体教具没有容积。只有能够装东西的物体,才具有容积。引导学生发现:一般情况下,物体的容积比体积小。

  。

  出示课件:体积与容积的区别

  (设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间的内在联系,形成比较完整的认知结构。)

  (三)解决问题,巩固应用

  1、试一试(P42)

  出示两个相同小正方体让学生比较大小,然后用4个相同的小正方体,摆出形状不同的物体,让学生判断它们体积的大小。

  师:通过观察,你们发现什么规律?

  引导学生得出结论:体积的大小与物体所占空间的大小有关,与物体的形状无关。(同时出示课件)

  2、课件出示:(第42页“练一练”的第4题)

  (1)搭出两个物体,使它们的体积相同。

  (2)搭出两个物体,使其中一个物体的体积是另一个的2倍。

  (学生先独立按要求操作,然后同桌交流,最后全班交流。学生搭出的图形可能会不一样,这是教师可以引导学生发现体积相等,形状可能不一样,这样可以为下一题的练习打下基础。)

  3、说一说。(第42页“练一练”的第1、2题)

  (课件出示插图,让学生独立思考,再指名回答,说出理由。)

  4、想一想。(第42页“练一练”的第3题)

  (设计意图:练习的设计体现了层次性、科学性和趣味性。学生利用所学知识解释生活中的问题,是所学知识的拓展和延伸。)

  (四)评价体验

  今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?你对自己这节课的表现满意吗?

体积的教学设计2

  教学内容:

  《圆锥的体积》是九年义务教育六年制小学数学第十一册第三单元的内容。

  教学目标:

  1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。

  2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。

  3、培养学生的合作意识及主动探索知识的精神。

  教学重点:

  让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。

  教学难点:

  能利用不同方法计算不同物体的体积。知识的活学活用。

  教学准备:

  1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。

  2、教学软件。

  教学流程:

  一、创设情景,激趣引新。

  1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”

  (学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)

  2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?”(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。

  设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉

  二、小组合作,探究学习。

  1、动手操作,测量圆锥体的体积。

  要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。

  全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉

  3、分组汇报不同的方法。

  学生在汇报时可边讲解边示范〉

  方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。

  方法二:利用手中的一立方厘米的小木块进行估算。

  方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。

  方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的'圆柱体的三分之一。用字母表示为:v=1/3sh

  设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。〉

  (1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?

  (2)学生再次在小组内操作探究。

  (3)汇报结论。

  (4)微机演示。

  当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。

  设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉

  4、评价以上各种办法

  同学们的结论是用公式计算比较方便。

  三、解决实际问题

  (问题一)

  1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)

  2、汇报结果。

  先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶剂可看作体积)

  (问题二)

  1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?

  2、汇报结果。

  用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262≈236克

  3、验证计算结果

  用称称一称,比较一下结果。

  4、讨论两次结果为什么不同。

  由于测量时厚度不计,计算时是近似值。都存在误差。

  设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉

  (问题三)

  利用圆锥体积公式计算。

  (1)r=2cm h=6cm v=(2)d=6m h=5mv=

  (问题四)

  计算不规则物体体积或容积。(直说出计算的方法即可)

  1、用什么方法计算出葫芦能装多少水?

  2、胡萝卜的体积怎样计算?

  3、不规则的零件体积计算?

  设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉

  四、总结全课

  说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。

体积的教学设计3

  教学内容:

  第25-26页,例2及练习四的第3、4题。

  教学目标:

  1、通过分小组倒沙的实验,使学生自主探索圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:

  掌握圆锥体积的计算公式。

  教学难点:

  1、理解圆锥体积公式的推导过程;

  2、掌握圆锥体积计算方法并能运用解决简单的实际问题。

  教学准备:

  1、学生预习教材;

  2、教师准备等底等高的圆柱和圆锥形容器若干个,沙土,直尺,平板。

  教学过程:

  一、复习

  1、圆柱的体积公式是什么?(学生交流后做幻灯片中的练习题)

  2、说一说圆锥有哪些特征。

  a、出示实物图,学生说一说生活中的圆锥形物体

  b、总结圆锥的特征,学生齐读。

  二、导入新课

  1、幻灯出示一圆锥形沙堆

  2、师:操场上,同学们要计算这堆沙子的体积,怎么计算呢?

  引出课题:这就是这节课我们要探索的问题

  3、板书课题

  三、探索新知

  1、学习圆锥体积的.推导公式

  (1)思考:圆柱的体积公式是怎样推导出来的?(学生交流讨论,教师及时鼓励学生回答)

  (2)师:我们能不能也通过已学过图形来求圆锥的体积呢?

  学生小组讨论交流

  (3)师:有的同学提出了做实验的方法,那么需要哪些器材呢?

  学生交流后,幻灯出示实验器材

  (4)师:用这些器材怎样做实验呢?

  学生小组讨论后,教师:下面,我们就来试一试这种方法

  (5)学生做实验

  A、观察自己手中的圆柱与圆锥,讨论他们的共同点。(等底等高)

  师:下面的时间,请同学们按照实验报告单的步骤做实验,并将结果填入实验报告单中。(教师巡视指导)

  B、集体交流实验结论,大屏幕演示结果

  C、想一想:通过实验你发现了什么?

  要求一个圆锥的体积,必须具备哪两个条件?

  明确:求圆锥的体积,圆锥的底面积和高是必备的直接条件。

  (6)练习

  2、拓展内容

  (1)有些情况下,题目中并不直接告诉圆锥的底面积和高,如果遇到下列情况,我们该如何求圆锥的体积呢?

  (2)学生分小组讨论,填写表格。(教师巡视指导)

  (3)集体交流,大屏幕展示结果

  (4)练习:

  3、巩固练习

  三、拓展知识

  1、出示几组不同的情况,指定每组完成一项

  2、展示结果

  3、练习

  四、小结

  师:同学们,今天这节课你都学会了什么?

  学生交流回答,教师板书

  五、作业设计

  六、板书设计

  圆锥的体积

  等底等高的圆锥和圆柱,

  圆锥的体积是圆柱体积的

体积的教学设计4

  指导思想与理论依据:

  本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。

  教学背景分析:

  (一)教学内容分析:

  1、教材内容:

  本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  2、研读完教材后,自己的几个问题:

  (1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?

  (2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。

  (3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?

  (4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?

  3、自己的创新认识:

  首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。

  其次,是要提供给同学们一个可操作的空间。

  (二)学情分析:

  1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的`渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。

  2、自己的认识:(结合自己在讲课时发现的问题而谈)

  学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。

  (三)教学方式与教学手段分析:

  根据本节课的教学内容及特点,在教学设计过程中我选择了 “操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。

  (四)技术准备与教学媒体:

  在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。

  教学目标设计:

  (一)教学目标:

  1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。

  3、培养学生的观察、分析的综合能力。

  (二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积

  (三)教学难点:通过实验的方法,得到计算圆锥体积的公式。

体积的教学设计5

  教学目标

  知识目标

  使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解相邻的两个体积单位间的进率是1000的道理。

  能力目标

  能够采用对比的方法,记忆并区分长度单位、面积单位和体积单位。

  情感目标

  培养学生的学习迁移能力和探究能力,使学生会应用“猜想-验证”的方法解决数学问题。

  重点

  体积单位的进率。

  难点

  体积单位的进率的化聚。

  教学过程

  一、复习引入

  1.填空:

  ①长方体体积=();

  ②正方体体积=()。

  ③常用的体积单位有()、()、();

  师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

  合作探究

  二、课程内容

  1.体积单位间的进率。

  (1)出示:1个棱长是1分米的正方体木块。

  图中是一个棱长为1分米的正方体,体积是1立方分米。想一想,它的体积是多少立方厘米呢?

  提问:

  ①当正方体的棱长是1分米时,它的体积是多少?

  ②当正方体的棱长是10厘米时,它的体积是多少?

  ③而1分米是多少厘米?1立方分米等于多少立方厘米?

  小组合作填表:

  《体积单位间的进率》教学设计

  小组汇报结论:1立方分米=1000立方厘米

  同理得出:1立方米=1000立方分米

  小结:相邻两个体积单位之间的进率都是1000。

  (2)将长度单位、面积单位、体积单位加以比较:

  先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?

  (3)学习体积单位名数的改写。

  思考:①怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

  ②怎样把低一级的体积单位的名数改写成高一级的'体积单位的名数?

  出示例题3:3.8立方米是多少立方分米?2400立方厘米是多少立方分米?

  写成如下形式:

  3.8立方米=(3800)立方分米2400立方厘米=(2.4)立方分米

  ⒊出示例4:看见你得到哪些信息?

  ⑴这个包装箱的体积是多少?

  V=50×30×40

  =60000cm3

  =60dm3

  =0.06m3

  ⑵大家想一想,问题中没有要求我们最终用什么单位,你选择哪一个?为什么?

  如果出现这样答,你必须选择那个答案?

  答:这个牛奶包装箱的体积是m3。

  ⑶你还有其他的途径求出体积为0.06m3。先转化单位,再计算。

  拓展应用

  一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克?

  总结

  小结今天学习的内容。

  作业布置

  在具体的解决问题中,要根据题目的要求转化体积单位,还要注意已知条件单位之间的统一。

  板书设计

  体积单位间的进率

  1立方分米=1000立方厘米

  1立方米=1000立方分米

体积的教学设计6

  学情分析:

  根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学目标:

  1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

  2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

  3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学重点:

  圆柱体体积的计算

  教学难点:

  圆柱体体积公式的推导

  教学用具:

  圆柱体学具、

  教学过程:

  一、复习引新

  1.求下面各圆的面积(回答)。

  (1)r=1厘米; (2)d=4分米; (3)C=6.28米。

  要求说出解题思路。

  2.提问:什么叫体积?常用的体积单位有哪些?

  3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的.体积=底面积×高)

  二、探索新知

  1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

  2、公式推导。(有条件的可分小组进行)

  (1)请同学指出圆柱体的底面积和高。

  (2)回顾圆面积公式的推导。(切拼转化)

  3、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  4、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  5、教师演示。

  把圆柱拼成了一个近似的长方体。

  6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  (1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  (2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  (3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积 底面积 高

  圆柱体积 底面积 高

  8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  9、用字母如何表示。

  V=sh

  10、小结。

  圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

  11、教学算一算

  审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

  12、教学“试一试”

  小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

  三、巩固练习

  课后“练一练”里的练习题。

  四、课堂小结

  这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。

体积的教学设计7

  教学目的:使学生初步掌握圆锥体积的计算公式。

  并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

  教学难点:圆锥的体积应用

  学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件

  教学时间:一课时

  教学过程:

  一、复习

  1、圆锥有什么特征?(课件出示)

  使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

  二、导人新课

  出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。

  板书课题:圆锥的体积

  三、新课

  1、教学圆锥体积的计算公式。

  师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

  指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

  师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

  先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

  教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”

  然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  学生分组实验。

  汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。

  多指名说

  接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

  多找几名同学说。

  板书:圆锥的体积=1/3 ×圆柱体积

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?

  引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

  板书:圆锥的体积= 1/3 ×底面积×高

  师:用字母应该怎样表示?

  然后板书字母公式:V=1/3 SH

  师:在这个公式里你觉得哪里最应该注意?

  教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  1/3×19×12=76((立方厘米))

  答:这个零件体积是76立方厘米。

  做一做:课件出示,学生回答后,教师订正。

  1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?

  2、已知圆锥的底面半径r和高h,如何求体积V?

  3、已知圆锥的`底面直径d和高h,如何求体积V?

  4、已知圆锥的底面周长C和高h,如何求体积V?

  5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?

  例2课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  判断:课件出示,学生回答后,教师订正。

  1、圆柱体的体积一定比圆锥体的体积大( )

  2、圆锥的体积等于和它等底等高的圆柱体积的 ( ) 。

  3、正方体、长方体、圆锥体的体积都等于底面积×高。 ( )

  4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米( )

  四、教师小结。

  这节课我们学习了哪些知识?你还有什么问题吗?

  五、作业。课本练习

体积的教学设计8

  【教学目标】

  1、探索圆柱体积的计算方法,利用数学思想,体验数学研究的方法。

  2、让学生掌握圆柱体积的计算方法,运用体积公式解决简单的实际问题。

  3、通过把圆柱体转化成近似的长方体,提高学生解决问题的能力,感受获得成功的喜悦。

  【教学重点】掌握和运用圆柱体积的计算公式。

  【教学难点】圆柱体积公式的推导过程。

  【教学方法】直观教学法,先用教具让学生观察比较,再让学生动手操作。在实践操作过程中理解掌握圆柱体积的计算方法。

  【教学过程

  一、情景导入,复习旧知。

  1、什么是圆柱的体积?

  ①出示情境图。修一面墙,用哪一种砖,所要的块数较少?为什么?

  ②什么叫做物体的体积?

  ③长方体的正方体的体积计算公式是什么:从公式中可以看出,要计算长方体和正方体的体积必须得到哪些明确的数据?

  ④推测:圆柱的体积可能与它的什么有关?

  2、导入新课。

  这节课我们就一起来探索圆柱体积的计算方法。板书课题:“圆柱的体积”

  二、探索新知

  1、比较大小,探究圆柱的体积与哪些因素有关。(让学生先试着说说)

  (1)图1:比较等高不等底的三个圆柱的体积。(学生通过观察发现等高时底面积越大圆柱的体积也就越大)

  (2)图2:比较等底不等高的五个圆柱的体积。(学生通过观察发现等底时高越大圆柱的体积也就越大。)

  (3)圆柱的体积计算公式可能是什么样的?V=Sh 2、大胆猜想,求证体积公式。

  (1)引导学生回忆长方体、正方体的.体积计算方法。

  (2)设疑:圆柱的体积又该怎么样计算呢?根据以前学过的知识你可以做出怎样的假设?

  (3)学生小组讨论交流。

  (4)各小组参加全班交流汇报。(把圆柱底面分成许多相等的小扇形,把圆柱切开,就可以拼成一个近似的长方体,长方体的体积是底面积乘高,圆柱的体积也可能就是底面积乘高来计算的。)

  3、演示转化过程,推导公式。

  (1)老师操作转化过程。先分一个四或八等分的再分手上的这个十六等分的。

  (2)学生带问题操作转化过程。

  a:拼成的长方体的底面积等于圆柱的什么?

  b:拼成的长方体的高又是圆柱的什么?(长方体的底面积等于圆柱体的底面积,高等于圆柱体的高。)

  师生共同完成推导过程。

  长方体的体积=底面积×高 圆柱的体积=底面积×高 v = s h 圆柱的体积计算公式就是:v=sh

  (4)如果知道圆柱的底面半径r和高h,圆柱的体积公式又可以怎样来写呢?v=πr2h

  (5)教材第25页“做一做”第1、2题。(第2题先让学生说说解题步骤,再齐练)

  4、教学例6。

  (1)出示例6。读题,说说从题中获得的信息。

  (2)引导学生思考:解决这个问题就是要计算什么?

  老师:求杯子的容积就是求这个杯子可容纳物体的体积,计算方法跟圆柱体积的计算方法相同。

  (3)学生独立解决问题。

  (4)组织交流反馈。

  交流时,引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

  三、 巩固应用

  1、完成教材第26页“做一做”第一题。

  (1)要判断这杯水够不够喝,需要知道什么?你打算分哪几步计算?尝试完成。

  (2)要求这个问题,需要先求什么?再求什么?独立完成。

  2、完成教材第28页练习五第2题。

  (1)尝试完成。

  (2)说说解题思路。

  3、完成教材第28页练习五第3题。

  (1)尝试完成。

  (2)说说解题思路。

  四、课堂小节

  今天这节课,我们一起探究了圆柱体积的计算方法。在探究的过程中,我们经历了猜测、实验、证明的思维过程。圆柱体积的计算方法和长方体、正方体相同,都可以用“底面积×高”来求。

  五、课堂作业

  教材练习五第4、5题。

  板书设计:

  圆柱的体积 长方体的体积=底面积×高 圆柱的体积 =底面积×高 V= s h 圆柱的体积计算公式是v=sh=πr2h

体积的教学设计9

  教学内容:

  北师大版五年级下册第四单元《长方体二》第一课时(体积和容积),课本41-42页。

  教学目标:

  1、通过具体的实验活动,了解体积和容积的实际含义,初步了解体积和容积的概念。以及它们之间的区别。

  2、在操作、交流中,感受物体体积的的大小,发展空间观念。

  3、在学习中感受到数学的魅力,体验学习数学的乐趣,有成功的体验。

  教学重难点:

  1、重点:通过具体的实验活动,初步了解体积和容积的概念。体积和容积的概念。

  2、难点:理解体积和容积的联系和区别。

  教学准备:

  课件、两个相同的量杯、大小不同的瓶子、水、土豆、红薯、水杯、量杯(放入百宝箱以备用)。

  教学流程:

  课前准备

  同学们,今天我们的课堂来了很多客人,让我们用最热烈的掌声欢迎他们的到来。希望在今天的课堂上,大家能把更棒的自己展现给他们,好吗?

  一、故事导入

  同学们《乌鸦喝水》的故事大家听说过吗?今天老师把它带来了,请看!

  (媒体播放乌鸦喝水视频)

  1、你知道乌鸦是怎样喝到水的吗?谁来说说。(引导学生明白石头占有一定的空间)

  2、那么往瓶子里放石子水面为什么会升高呢?(石子占据了一定的空间,把水挤上来了。)

  石子占据一定的空间,其实我们身边的物体都占有一定的空间。你们看,黑板占据一定的空间,小小的黑板檫也占有一定的空间,黑板占据的空间大一些,黑板檫占据的空间小一些。

  3、现在请同学们找一找身边哪些物体所占有占空间大些,那些物体所占有的空间小些?(引导说明有的物体占的空间大,有的物体占的空间小。)

  4、同学们说的这些物体很容易比较出谁所占有的空间大,老师带来的这两样物体单凭眼睛看是很难分辨谁所占有的空间大。

  二、教学新授

  活动一:【认识体积】

  1、师出示红薯和土豆,你来猜一猜吧?

  (学生大胆猜测,意见不一)

  你有什么好办法可以证明你的猜测呢?讲台上摆好量杯若干、水若干不同形状的容器若干盛水器皿一个。(时钟倒计时学生分组合作讨论探究)小组代表汇报讨论结果。

  师生验证方法的合理性。生做实验说明实验结果和结论。

  师:通过实验我们知道土豆所占的空间比红薯大一些,土豆和红薯各自所占空间的大小就是它们的体积,那么什么是物体的体积呢?点明体积的概念,(黑板出示),点明本节课所学内容之一——体积板书课题:体积

  2、

  大家看一看身边的同学有体积吗?你身边同学的体积指的是什么?你还能举例说一说什么是物体的体积吗?

  3、笑笑和淘气用大小一样的小正方体分别搭出两个不同的长方体,谁搭的体积大呢?

  课件出示:课本42页淘气和笑笑摆立方体情境图,比较谁的体积大?你是怎么

  比较出来的?

  笑笑搭的长方体所占的空间大,所以笑笑搭的长方体体积大。

  4、有些物体用数数的办法是不能比较出体积大小的,大家看---课件出示:课本42页淘气玩橡皮泥由长方体捏成球,体积变了吗?为什么?师总结:物体的体积和所占空间的大小有关,物体的形状无关。

  现在同学们认识物体的体积,接下来老师给同学们带了一些事物图片。

  活动二:【认识容积】

  1、师出示课件(冰箱、茶叶盒、土豆----)同学们分一分,那些能装东西,那些不能装物体?明确:能装其他东西的物品叫做容器。即时练习:举例说明生活中还有那些容器?

  2、师:同学们看这两个容器,谁装的水多一些呢?(出示不同形状的容器),你有什么好办法比一比呢?(小组合作讨论方法,组内交流并汇报)师生验证方法的合理性。生做实验说明实验结果和结论。

  通过实验我们知道这个容器装的水比另一容器多一些。这两个容器所能容纳水的体积就是它们的容积,那么什么叫容器的容积呢?(点明本节课学习的第二个概念:容积)

  板书:容器所能容纳物体的体积叫做容器的容积。

  3、出示课件装有半杯水的烧杯,提问:这杯水的体积就是烧杯的`容积吗?

  (讨论理解“所能容纳”的真正含义)

  4、随机:装有铅笔的笔筒,把它装满铅笔,那么,铅笔的体积就是笔筒的容积吗?

  (有空隙,没有完全装满)

  5、课件出示:通过冰箱以及装有东西的冰箱来区别体积和容积。(体会同一个容器的体积一定比容积大)强调为什么?

  6、课件出示:两箱装有实验器材的箱子,通过箱子的厚薄,体会容积的大小(同一个容器的体积相等,容积不一定相等)

  三、课堂小结

  通过以上的学习,你都知道了什么?(那么你们敢接受老师的挑战吗?)

  四、巩固练习

  1、判断题

  (1).冰箱的容积就是冰箱的体积。()

  (2).游泳池注入半池水,水的体积就是游泳池的容积。()

  (3).两个体积一样大的盒子,它们的容积一样大。()

  (4).汽车上的油箱,油箱里装满汽油,汽油的体积就是油箱的容积。()

  2、选择题

  (1)盛满一杯牛奶,()的体积就是()的容积。

  ①杯子

  ②牛奶

  (2)装满沙子的沙坑,()的体积就是()的容积。

  ①沙子

  ②沙坑

  (3)做一个长方体油桶,需要多少铁皮,是求长方体的()。

  ①表面积

  ②体积

  ③容积

  (4)求一个长方体木块占空间的大小,是求长方体的()。

  ①表面积

  ②体积

  ③容积

  (5)求一个油桶能装油多少升,是求油桶的()。

  ①表面积

  ②体积

  ③容积

  (6)一个棱长4厘米的正方体木块,从正中挖去一个棱长1厘米的小正方体后,体积()。

  ①不变

  ②变大

  ③变小

  3、课本42页练一练的第三题:小红和小明有一瓶同样多的饮料,小明倒3杯,小红倒2杯,你认为有可能吗?为什么?

  4、搭积木:用12个大小相同的正方体分别按要求搭一搭:

  (1)搭出的两个物体,使他们的体积一样大;

  (2)搭出的两个物体,使其中一个物体的体积是另一个物体的2倍;

  5、数学日记

  笑笑的一天(填一填)

  星期天,我找了一些铁丝,做了一个长方体的铁丝笼子并在它的外面贴上彩纸,妈妈问我用了多少铁丝,我得求这个长方体的();妈妈又问我用了多少彩纸,我得求这个长方体的()。真是一个漂亮的笼子!它有多大啊?我得求求它的(),可()我不会算呀,没有关系,我自学一下书本上的内容。这么漂亮的笼子,我用它来装我淘回来的小饰物,能装多少呢?我得算一算它的()。哇!一个小小的笼子竟能装这么多东西,真不错!

  五、全课小结

  回顾本节课所学内容,谈收获

  六、写数学日记。

  七、板书设计:

  体积和容积

  物体所占空间的大小叫做物体的体积。

  容器所能容纳物体的体积叫做容器的容积。

体积的教学设计10

  教学目标:

  1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

  2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。

  3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

  教学重点和难点:

  圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

  教具:

  圆柱的体积公式演示教具,圆柱的体积公式演示课件

  教学过程:

  一、教学回顾

  1、交代任务:这节课我们来学习《圆柱的体积》。

  2、回忆导入

  (1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?

  (2)、我们都学过那些立体图形的体积公式。

  二、积极参与探究感受

  1、猜测圆柱的体积和那些条件有关。(电脑演示)

  2、.探究推导圆柱的体积计算公式。

  小组合作讨论:

  (1)将圆柱体切割拼成我们学过的什么立体图形?

  (2)切拼前后的两个物体什么变了?什么没变?

  (3)切拼前后的两个物体有什么联系?

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

  ①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)

  2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

  3、要用这个公式计算圆柱的体积必须知道什么条件?

  三、练习

  1、填空

  (1)、圆柱体通过切拼转化成近似的( )体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于

  (),所以,圆柱体的体积等于()用字母表示

  () 。

  (2)、底面积是10平方米,高是2米,体积是

  ()。

  (3)、底面半径是2分米,高是5分米,体积是

  ( )。

  2讨论:

  (1)已知圆柱底面的半径和高,怎样求圆柱的体积

  V=兀r2 × h

  (2)已知圆柱底面的直径和高,怎样求圆柱的体积

  V=兀(d÷2)2×h

  (3)已知圆柱底面的周长和高,怎样求圆柱的体积

  V=兀(C÷兀÷2) ×h

  3、练习:已知半径和高求体积,已知直径和高求体积。

  四、小结或质疑

  五、作业

  课后做一做第1、2、3题。

  板书设计:

  圆柱的体积

  长方体的体积=底面积x高

  圆柱的体积=底面积x高

  V=Sh

  本节课的设计思考:

  一、让学生在现实情境中体验和理解数学

  《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的'水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

  二、鼓励学生独立思考,引导学生自主探索、合作交流

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。不足之处:

  在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。

  三、教师的语言非常贫乏

  在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。

  苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术

  是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。

体积的教学设计11

  教学目标:

  1、在长方体、正方体的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

  2、经历探究测量不规则物体体积方法的过程,体验“等积变形”的转化过程。获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作的精神、创新精神和问题解决能力。

  3、感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

  教学重点:在测量不规则物体体积的过程中感悟“转化”的数学思想。

  教学难点:综合运用所学知识测量不规则物体体积的活动经验和具体方法。

  教学准备:量筒、水、大螺丝、橡皮泥

  教学过程:

  一、谈话引入,测量规则物体的体积

  师:同学们,本学期我们已经学习了关于体积和容积的知识,你会求长方体和正方体的体积吗?请问,计算长方体体积需要知道什么信息?

  师:很好,[出示一张A4纸],一张A4纸也是一个薄薄的长方体,那么,你能求出它的体积吗?

  引导学生思考,悟出一张纸太薄了,可以用多些的纸来测量,再进一步感悟到用整十、整百张来测量更便于计算。

  板书:V1张=V100张÷100

  [通过测量A4纸的体积,即复习了长方体体积的计算方法,同时又有所超越,激发了学生探究的欲望,为后面测量不规则物体的体积埋下伏笔。]

  二、探究合作,测量不规则物体的体积

  1、明确任务,思考方案

  师:刚才我们是直接测量一张A4纸的体积吗?我们是把1张A4纸的体积转化为100张,然后再求出一张。这里同学们很聪明地利用了转化思想,从而想出了测量方法。规则物体的体积测量过了,那桌面上这些不规则物体的体积,你想测量吗?今天我们就来测量不规则物体的体积。(板书课题。)

  不规则物体的体积你会测量吗?先互相说说打算怎么测量?(给时间让学生小组讨论测量方案。)

  [在动手实验之前,给予学生思考的时间,能使学生明确实验的任务和养成先制定实验方案,再根据方案实验的'科学态度。]

  2、小组合作,动手测量

  3、请小组代表上台介绍,(一个同学汇报,组内同伴演示实验过程。)

  师根据学生的回答板书:V物体=V上升部分

  还有其它不同的测量方法吗?

  水下降的方法。(板书:V物体=V下降部分)

  水溢出的方法。(板书:V物体=V溢出部分)

  我们现在懂得了利用转化思想测量不规则物体的体积,李老师也在测量不规则物体的体积,但是我遇到难题了,你们想帮我解决吗?

  [教师利用学生实验过程中的亲身体验,引导学生感悟测量不规则物体体积时转化思想的应用,并且激发学生积极思考不同的转化方法,使学生对利用排水法测量不规则物体体积有一个丰富的体验和感受,让学生体会到“做中学”的乐趣。]

  三、拓展提升,测量灯泡的体积

  教师出示灯泡,灯泡会浮起来怎么测量?(先让学生独立思考,然后交流汇报。)

  学生动手测量灯泡的体积。

  四、全课总结

  师:今天这节课你们有什么收获?

  五、课后延伸

  今天我们学会了测量不规则物体的体积,如果要测量你自己的体积你会测量吗?回家思考一下,李老师相信你们能想出办法来的。

  六、板书设计

  测量不规则物体的体积

  转 化

  V1张 = V50张÷50

  V物 = V上升部分

  V物 = V下降部分

  V物 = V溢出部分

体积的教学设计12

  【学习目标】

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  【学习过程】

  一、板书课题

  师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

  二、出示目标

  本节课我们的目标是:(出示)

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  了达到目标,下面请大家认真地看书。

  三、出示自学指导

  认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

  1、圆柱的体积公式是如何推导出来的?

  2、圆柱的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能做对检测题!

  师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

  四、先学

  (一)看书

  学生认真看书,教师巡视,督促人人都在认真地看书。

  (二)检测(找两名学生板演,其余生写在练习本上)

  第20页“做一做”和第21页第5题。

  要求:1、认真观察,正确书写,每一步都要写出来。

  2、写完的同学认真检查。

  五、后教

  (一)更正

  师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

  (二)讨论

  1、看第1题:认为算式列对的请举手?

  【圆柱的体积=底面积×高】

  2、看第2题:认为算式列对的举手?你是怎么思考的?

  3、看计算过程和结果,认为对的举手?

  4、评正确率、板书,并让学生同桌对改。

  今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

  六、补充练习:

  1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

  2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。

  3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

  下面,我们就来运用今天所学的'知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

  七、当堂训练(课本练习三,第21页)

  作业:第3、4、7、8题写作业本上

  练习:第1题写书上,第2、6、9、10题写练习本上

  八、板书设计

  课题三:圆柱的体积

  圆柱的体积=底面积×高

  课后反思:

  本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

体积的教学设计13

  教学内容:苏教版义务教育教科书第19页例12、“练一练”、练习四第9~14题。

  教学目标:

  1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理。

  2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率。

  3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。

  教学重点与难点:

  根据进率进行相邻体积单位的换算。

  教具:课件棱长是1分米的正方体纸盒

  教学过程:

  一、复习导入

  提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上.”

  学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程.

  (2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来.

  二、探究新知

  1、推导1立方分米=1000立方厘米

  (1)猜猜看,1立方分米等于多少立方厘米呢?

  你们能应用类似的方法推导出来吗?

  要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来.

  学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。

  (2)展示推导过程

  请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示。

  (2)展示推导过程

  请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示.

  (3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。(或写在黑板上)

  3.推导1立方米=1000立方分米

  (1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”

  (2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?

  (3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米

  教师用课件显示出来(或写在黑板上)。

  4.总结相邻两个体积单位间的进率。

  (1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。

  (2)引导学生观察:1立方分米=1000立方厘米

  1立方米=1000立方分米

  并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。

  5.构建长度、面积和体积单位的计量系统.

  (1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?

  (长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的.;体积单位是用来计量物体所占空间大小的.)

  (2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第31页上的表格填完整,集体订正。

  三、练习应用

  1、完成练一练

  引导学生认真审题,独立解答。

  集体交流,指名说说换算思路。

  2、完成练习四第9题。

  学生独立完成表格。

  长度单位、面积单位、体积单位有什么联系和区别?这三类单位的进率各有什么特点?

  3、完成练习四第10题

  学生独立完成,集体订正

  引导学生说说面积单位换算与体积单位换算的区别。交流

  引导学生归纳将高级单位的名数改写成相邻的低级单位的名数的一般方法(师板书):

  高级单位的名数×1000=相邻的低级单位的名数

  4、完成练习四第11、12题。

  四、全课总结

  引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。

  本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写。

  五、作业

  练习四第13、14题

体积的教学设计14

  教学内容:

  人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式。

  教学难点:

  圆柱体积计算公式的推导过程

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积.

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的'底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,推导公式。

  (1)、思考你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:要想求出一个圆柱的体积,需要知道什么条件?

  (8)、学生自学第17页例4上面的一段话:用字母表示公式。

体积的教学设计15

  一、教学目标

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  二、教学重、难点

  重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  难点:理解圆锥体积公式的推导过程。

  三、教具学具

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  四、教学流程

  (一)创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面最大的;

  生:我选择高是最高的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的`体积。并板书课题:圆锥的体积。

  (二)设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  生:大约是圆柱的一半。

  生:……

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:

  1、实验材料,任选沙、米、水中的一种。

  2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  师:

  1、谁来汇报一下,你们组是怎样做实验的?

  2、通过做实验,你们发现它们有什么关系?

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则v圆锥=sh÷3即v圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  五、联系生活,拓展运用

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。( )

  一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是( )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,

  得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,

  (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点? v锥=1/3sh

  (3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  活动五:整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

【体积的教学设计】相关文章:

圆柱的体积教学设计09-17

《圆柱的体积》教学设计08-31

《圆锥的体积》教学设计07-02

《体积单位》教学设计08-04

《圆锥的体积》教学设计15篇07-03

圆柱体积教学设计03-12

圆锥体积教学设计02-24

《体积和体积单位》教学反思07-14

圆柱的体积教学反思12-08