当前位置:9136范文网>教育范文>教学设计>《平行四边形的面积》教学设计

《平行四边形的面积》教学设计

时间:2024-06-16 14:14:26 教学设计 我要投稿

《平行四边形的面积》教学设计

  作为一名人民教师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。怎样写教学设计才更能起到其作用呢?以下是小编收集整理的《平行四边形的面积》教学设计,希望能够帮助到大家。

《平行四边形的面积》教学设计

《平行四边形的面积》教学设计1

  教材分析:

  本节课是在学生对平行四边形有了初步认识,学习了长方形、正方形面积计算的基础上进行教学的。平行四边形面积公式的推导方法的掌握,对后面三角形、梯形面积公式的学习具有重要的作用。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。本课时内容在教科书的第96至97页,包括剪拼图形、总结公式、试一试、练一练和问题讨论五个环节,这部分知识的学习、运用会为学生学习后面的三角形,梯形等平面图形的面积计算奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。

  学情分析:

  五年级的学生已经具有了自主学习、迁移推理的能力,在学平行四边形面积计算之前,学生已经了解了平行四边形各部分的名称及特点,掌握了长方形、正方形面积的计算公式。

  设计理念:

  根据教学内容,因材施教制定了教学思路:创设情境——指导探究——发现规律——实践应用。人人参与教学活动,动脑、动手、动口,达到理解和运用公式的目的。在解决问题中真切感受到数学知识来源于生活,又服务于生活。

  教学目标:

  1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  3、培养学生学习数学的兴趣及积极参与、团结协作的精神。

  教学重点:

  探究平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:

  平行四边形面积公式的推导过程。

  教具准备:

  课件、方格纸、剪刀、长方形、平行四边形。

  教学过程:

  一、情景引入,激趣导课

  1、情景引入(出示课件)

  2、从平行四边形的花坛中引出“平行四边形的面积”。

  师:这两个花坛哪一个大?(生自由说)

  我们已经知道长方形的面积是怎样算,平行四边形的面积又怎样算呢?

  3、揭题:平行四边形的面积(板书课题)

  二、动手操作,探究新知

  1、联想、猜测。(用数格子的方法)

  长方形的面积与它的长和宽有关系,请大家猜测一下平行四边形的面积和谁有关系,有什么关系?

  2、归纳意见,提出验证。(用剪、拼的方法)

  能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。

  ⑴小组合作,动手操作。

  ⑵演示操作过程。(课件演示)

  同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。

  ⑶观察几种不同的转化方法,它们有什么共同的地方?为什么沿高剪开?

  长方形有四个直角,只有沿高剪开,拼时才能出现直角。

  ⑷讨论:拼出的长方形和原来的平行四边形相比,你发现了什么?以下面的讨论题进行思考交流。

  ①拼出的长方形和原来的平行四边形比,什么变了,什么没变?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?

  ⑸讨论推导出平行四边形面积公式:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  3、演示过程,强化结果。

  大家刚才在操作中沿平行四边形任意几条高剪开、平移、拼都把一个平行四边形转化成一个长方形。请同学们再观察一遍(多媒体演示),一个平行四边形有无数条高,沿任意一条高剪开、平移、拼都可以把一个平行四边形转化成一个长方形,这个长方形的面积与原来平行四边形面积相等,这个长方形的长等于这个平行四边形的底,这个长方形的宽等于这个平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形面积等于底乘高。(刚才有同学猜想平行四边形的面积是两邻边的积,是不是这样呢?这里有一个平行四边形框架,请你拉一拉,发现了什么?邻边长度没变,面积变了,所以平行四边形面积不等于两邻边的积)

  从而也验证了大家前面猜想的底乘高等于平行四边形的面积是正确的`,在学习中我们采用了先猜想,再转化,最后验证等学习方法,这些方法在学习中我们经常用到。

  4、用字母表示公式。

  师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面积可以用字母什么表示?字母中间乘号可以省略。S=ah

  师:要求平行四边形的面积,必须知道什么?

  (通过大家共同的努力,推导出了平行四边形面积公式,下面让我们走进阳光小区,去解决一些实际问题。)

  5、利用公式解决例1。

  例1:一块平行四边形花坛的底是6米,高是4米,它的面积是多少?

  两人板演,其余做在练习本上。S=ah=6×4=24(m2),6×4=24(m2)

  [评析:根据刚才对平行四边形面积计算方法的初步感知,先让学生猜测平行四边形的面积怎样算,然后把平行四边形转化成长方形,利用长方形面积推导出平行四边形的面积,从而验证了学生的猜测是正确的。通过教学,向学生渗透了猜测—转化—验证等数学思想方法,为以后学习三角形和梯形的面积做了充分准备。]

  三、反馈练习,发展思维。

  课件练习

  四、课堂总结

  今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

《平行四边形的面积》教学设计2

  教学内容:

  人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》p86-88

  教学目标:

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

  教学重点:

  掌握平行四边的面积计算公式,并能正确运用。

  教学难点:

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教具准备:

  课件、平行四边形纸片、剪刀、直尺、三角板等。

  学具准备:

  2块平行四边形彩色纸片、三角板、直尺、剪刀

  教学过程:

  师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)

  一、情境创设,揭示课题

  1、创设故事情境

  同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

  2、复习旧知,揭示课题

  (1)、复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)

  (2)、师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

  (板书课题:平行四边形的面积)

  二、自主探究,操作交流

  1、大胆猜想

  师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

  师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

  (两个图形的面积相等,都是18平方米……) (知识点)

  师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的`面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?

  (师出示一个平行四边形纸板,生看图猜测。)

  生汇报猜测结果,师随机板书。

  师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?

  2、操作验证

  提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

  (师参与到小组活动中,巡视指导。)

  3、汇报交流

  师:你是怎样做的呢?谁愿意上来演示并说一说呢?

  (学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

  师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

  师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

  生:长方形。

  师:怎样剪才能拼成长方形呢?

  师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

  生再次操作。

  4、发现方法

  师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

  (电脑显示思考题)

  小组讨论交流。

  (1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  实物图片展示拼剪过程同时回答上面的讨论题。

  学生一边说教师一边板书:长方形面积=长×宽

  平行四边形面积=底×高 (知识点)(能力点)

  5、回顾公式推导过程

  (1)结合课件演示各部分间的相等关系。

  (2)指名说说平行四边形面积公式是怎么样推导出来的?

  6、学习用字母表示公式。

  师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)

  7、记忆公式

  闭上眼睛记记公式。

  如果要求平行四边形的面积,必需要知道哪些条件呢?

  8、尝试运用

  师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?

  (出示喜羊羊的草地图)(说明格式要求)学生独立完成。

  三、深化运用,加深理解

  通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”

  1、算出下列平行四边形的面积 (考查点)

  课件出示图形

  (羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)

  2、选一选。(题目见课件) (考查点、能力点)

  (强调:平行四边形的面积=底×底边对应的高)

  你有什么结论?(等底等高的两个平行四边形面积相等。)

  3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)

  (考查点、能力点)

  有一块地近似平行四边形,底是15米,高 是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?

  四、解决问题,应用拓展

  1、小小设计师:

  羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?

  2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?

  五、总结全课,提高认识

  这节课我们学习了什么知识?是怎么来学会这些知识的?

《平行四边形的面积》教学设计3

  一、教学目标

  (一)知识与技能

  让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  通过活动,培养学生的探索精神,感受数学与生活的密切联系。

  二、教学重难点

  教学重点:探索并掌握平行四边形面积计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

  四、教学过程

  (一)创设情境,激趣导入

  1.创设情境。

  (1)呈现教材第86页单元主题图。(PPT课件演示)

  教师:瞧!校园门口,你在哪些物体上看到了我们学过的平面图形?

  (2)学生汇报交流。

  (3)回顾:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。我们已经研究过哪些平面图形的面积?怎样计算?

  预设学生回答:长方形的面积=长×宽,正方形的面积=边长×边长。

  (4)引入新课:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。(板书单元课题:多边形的面积)

  2.揭示本节课题。

  复习引入。(PPT课件演示)

  请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那平行四边形的面积怎样计算呢?今天这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

  【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入平行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。

  (二)主动探索,推导公式

  1.用面积单位测量平行四边形的面积。

  (1)提问:要知道这个平行四边形的面积,怎么办?(PPT课件演示)

  引导学生回顾用面积单位测量图形面积的方法。

  (2)操作:现在把它们放在方格纸上,一个方格代表1 m2,不满一格的都按半格计算。平行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)

  (3)学生先独立数平行四边形的面积,再互相交流。

  预设平行四边形的面积:

  方法一:从左往右数,每行6个,有4行,平行四边形的面积是24平方米;

  方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24平方米。

  长方形的面积:长6米,宽4米,面积是6×4=24(平方米)。

  (4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。

  (5)填写表格。

  ①师生共同完成表格:平行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)

  ②引导学生观察:观察这个表格,你发现了什么?

  ③交流回报,小结:有的同学发现了,这个平行四边形的底与长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积与长方形的面积相等。还有的同学发现,这个平行四边形底乘以高正好等于它的面积,由此猜测平行四边形的面积=底×高。

  【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为平行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的.数据,沟通这两个图形之间的联系,为后面进一步探寻平行四边形面积的计算方法做准备。

  2.操作思考,推导公式。

  (1)教师:看来,数方格的确能让我们知道平行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算平行四边形的面积呢?

  这个平行四边形的面积恰好等于底×高,那是不是所有的平行四边形的面积都等于底×高呢?看来,还需进一步研究哦!(PPT课件演示)

  (2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将平行四边形转化成它们来计算面积呢?请大家借助手中的平行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。

  (3)操作转化,推导公式。

  ①操作转化。

  a.学生独立思考,动手剪拼平行四边形,将它转化成长方形后组内交流。

  b.学生展示汇报。(PPT课件演示)

  c.大家发现它们有什么相同之处?为什么要沿着平行四边形的高来剪开?有多少种不同的剪法?为什么?

  ②观察思考。

  a.观察:原来的平行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)

  b.思考:平行四边形的底和长方形的( )相等,平行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)

  c.学生汇报。(教师板书)

  ③概括公式。

  你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)

  (4)回顾与小结。

  ①我们已经知道平行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?

  ②教师小结:首先把一个平行四边形沿高剪开后平移拼成一个长方形,再观察原来的平行四边形和拼接后得到的长方形,发现等量关系:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。像这样把未知的平行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。

  【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将平行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识——沿高剪开后通过平移将平行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。

  (三)巩固运用,解决问题

  1.教学教材第88页例1。

  (1)出示例题,呈现问题情境。(PPT课件演示)

  (2)理解题意,叙述题目内容。

  ①用自己的话说一说题目的意思是什么?

  ②学生根据图文叙述:知道平行四边形花坛的底是6米,高是4米,求花坛的面积是多少平方米。

  (3)收集信息,明确问题。

  ①提问:从题目中你获得了哪些数学信息?要求什么?

  ②思考:要求花坛的面积,其实就是求什么?

  ③归纳:要求花坛的面积,其实就是求底是6米、高是4米的平行四边形的面积。

  (4)学生独立解答。

  (5)学生汇报,教师板书,规范书写。

  2.课堂练习。

  完成教材第89页练习十九第1题。

  (1)学生独立完成。

  (2)同桌互相说说自己是怎样做的。

  (3)全班集体交流:这个问题你是怎样算的?

  【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。

  (四)变式练习,内化提高

  1.基本练习。

  完成教材第89页练习十九第2题。(PPT课件演示)

  (1)学生独立完成。

  (2)同桌互相说一说自己是怎样算的。

  (3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择平行四边形中对应的底和高来计算面积。)

  参考答案:12 cm2;18.72 cm2;4.8 cm2。

  2.提高练习。

  完成教材第89页练习十九第4题。(PPT课件演示)

  (1)理解题意:怎样计算出这两个平行四边形的面积?需要知道什么?(先测量出平行四边形中对应的底和高,再利用公式计算。)

  (2)学生独立完成。

  (3)全班集体交流:两个平行四边形的底和高分别是多少?怎样计算面积?

  3.拓展延伸。

  等底等高的平行四边形的面积一定相等吗?面积相等的平行四边形一定等底等高吗?(PPT课件演示)

  【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。

  (五)全课总结,畅谈收获

  1.今天这节课学习了什么?怎样学的?

  2.今天我们主要推导出了平行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了平行四边形的面积;再观察表格中的数据,猜测平行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的平行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的平行四边形与长方形之间的等量关系,从而推导出了平行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量——观察——猜测——转化——验证的过程,最后我们还利用公式解决了生活中的实际问题。

  (六)作业练习

  1.课堂作业:练习十九第5题。

  2.课外作业:练习十九第3题。

《平行四边形的面积》教学设计4

  教学内容:平行四边形面积的计算。

  教学目标:

  知识目标:通过长方形面积计算知识迁移,理解长方形面积的计算公式,并能正确计算平行四边形面积。

  能力目标:在比一比,动一动中发展空间观念,在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。

  情感目标:通过活动,激发学习兴趣,培养互相合作、交流、探索的`精神,感受数学与生活的密切联系。

  教学重点:平行四边形面积的计算。

  教学难点:推导平行四边形面积计算公式的过程。

  教具学具的准备:投影机,平行四边形,剪刀,三角板。

  教学过程:

  一、创设情景,设疑导入。

  从小朋友劳动图片,出示长方形,平行四边形清洁区,设疑导入课题。

  二、初步探究,数格求积。

  分别出示一个平行四边形,长方形,用数方格的方法求出它们的面积。

  三、动手操作,获取新知。

  1、小组动手剪拼图形。

  2、交流剪拼法及发现。

  3、建立平行四边形与长方形的联系,推导平行四边形面积的计算公式。

  4、自学课本第64、65页的内容。

  5、利用公式解决课前问题。(比较两块清洁区的大小,在学生选择清洁区的同时进行思想教育)

  6、课堂质疑:验证用公式算出来的结果和用数方格求出来的结果是否一样。

  四、拓展练习,开创思维。

  五、开放题。

  六、通过这节课的学习,你有什么收获?

  板书设计:

  平行四边形面积的计算

  长方形的面积=长╳宽

  平行四边形的面积=底╳高

  S=a╳h=a.h=ah

《平行四边形的面积》教学设计5

  教材分析:

  《平行四边形的面积》是人教版新课程标准五年级上册第六单元的内容,平行四边形面积的计算是在学生已经学会并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的运用为学习后面的三角形和梯形面积计算奠定良好的基础。

  教学目标:

  1、知识与技能:知识与技能:学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

  2、过程与方法:学生通过观察,操作,比较经历平行四边形面积公式的推导过程,培养学生的空间观念。

  3、情感态度与价值观:通过活动,激发学生学习兴趣,培养学生探究知识的精神,增强学生学习数学的积极性;感受学习数学的快乐。

  教学重难点:

  教学重点:理解并掌握平行四边形面积的计算公式,能正确计算平行四边形的面积。

  教学难点:学生探究平行四边形的面积计算公式的'过程中,充分体验转化和建模的数学思想。

  教具准备:

  课件、平行四边形纸片、剪刀、直尺、三角板等。

  学具准备:

  3块平行四边形彩色纸片、三角板、直尺、剪刀。

  教学过程:

  一、创境导入,激发兴趣

  由故事引入课堂,王老汉给儿子分地,大儿子一块长方形地,小儿子一块平行四边形地,俩个儿子都认为自已的地少,王老汉没有办法,想让同学们帮他解决这个问题。让学生自己去体验平行四边形面积推导的必要性,从而激发学生的探究欲望。

  二、多元学习,操作交流

  1、大胆猜想

  师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

  师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

  师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的.面积可能与它的什么有关?

  生汇报猜测结果,师随机板书。

  师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?激发学生探求知识的兴趣。

  2、操作验证

  提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  学生动手剪拼(可以小组合作),并在小组内交流。

  3、汇报展示

  师:你是怎样做的呢?谁愿意上来演示并说一说呢?

  (学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

  师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

  师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

  生:长方形。

  师:怎样剪才能拼成长方形呢?

  师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

  生再次操作。

  4、发现方法

  师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

  (1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  实物图片展示拼剪过程同时回答上面的讨论题。

  学生一边说教师一边板书:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  5、利用课件回顾公式推导过程

  (1)结合课件演示各部分间的相等关系。

  (2)指名说说平行四边形面积公式是怎么样推导出来的?

  6、学习用字母表示公式。

  师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?S=ah

  7、记忆公式

  如果要求平行四边形的面积,必需要知道哪些条件呢?(底和高),底和高必须相对应。

  8、尝试运用

  师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?看计算结果与数方格方法求得的面积结果是不是一样?

  三、巩固练习,深化运用,

  课堂练习是数学教学的主要环节之一,为了新知及时巩固运用,才能得到理解与内化,我分层设计练习题,通过不同练习,巩固计算公式。

  四、课堂总结,深化新知

  最后,我问同学们,这节课我们学习了什么知识?是怎么来学会这些知识的?通过课堂总结,有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

《平行四边形的面积》教学设计6

  教学内容:

  北师大版五年级数学上册第四单元(P53——P55)

  教材分析:

  本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。

  学情分析:

  二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。

  教学目标:

  经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。

  掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。

  能运用平形四边形的面积计算公式解决相关的问题。

  教学重点:

  通过操作活动掌握平行四边形的面积的计算方法。

  教学难点:

  经历推导平行四边形面积公式的过程。

  教法学法:

  实验探究、推理验证、小组合作学习

  教具准备:

  课件、剪刀、准备平行四边形若干。

  教学过程:

  一、开门见山,导入新课

  今天我们一起来探索平形四边形的面积。(板书课题)

  二、新知探究

  1.分析平行四边形给定的3个数据所表示的意义。

  2.如何求这个平行四边形的面积,说一说你的想法和理由。

  猜想:

  (1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。

  (2)提出来数方格的方法来试一试。看选择哪两个数来计算比较好。

  3.借助方格纸数一数,比一比

  学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的'平行四边形放在方格纸上数一数。

  要求:

  (1)独立完成

  (2)小组内交流一下你的想法。

  (3)方法展示。

  (4)猜想结果:平行四边形的面积等于底乘高。

  这只是我们的猜想,那如何来验证我们的猜想是否成立呢?

  4.平形四边形如何转化为长方形,验证猜想。

  (提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)

  (1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。

  (2)是不是沿任意一条高剪开都可以拼成长方形呢?

  动手操作,验证猜想。

  (3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?

  生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。

  (4)再仔细观察,你还有什么发现?

  生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

  5.怎样求平形四边形的面积?想一想,与同伴交流

  (1)拿着你们组刚才转化的图形再摆一摆,说一说整个操作过程。说一说我们怎样求平行四边形的面积?

  (2)你会填吗?

  A、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积( ),长方形的长相当于平行四边形的( ),长方形的宽相当于平行四边形的( ),因为长方形的周长=( ),所以平行四边表的面积=( )。

  B、如果用S表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:S=( )。

  6.计算主题图中的平形四边形的面积。

  三、实践应用,巩固与提高。

  1.计算下列图形的面积(抢答)

  (1)底为4厘米,高为2厘米。

  (2)底为5分米,高为9分米

  (3)底为3米,高为7米

  2.判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等( )

  (2)平行四边形底越长,它的面积就越大( )

  3.计算下列图形的面积。(单位:厘米)

  四、课堂小结。

  1.你今天学习了什么?有何收获?

  2.在计算平行四边形的面积时,应注意什么?

  板书设计:

  探索活动:平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

《平行四边形的面积》教学设计7

  教材简析:

  《平行四边形的面积计算》九年义务教育北师大版小学数学五年级上册平行四边形的面积、。本单元共包括平行四边形的面积、三角形的面积、梯形的面积。《平行四边形的面积计算》是在学生学习了长方形和正方形面积计算公式之后,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。

  教学目标:

  1、知识目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

  2、能力目标:通过教学活动,向学生渗透“转化”的思想,培养学生的动手操作能力、迁移能力,发展学生的空间观念,同时培养学生合作,交流的意识。

  3、情感与价值观:使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  教学重难点:

  理解平行四边形面积的推导过程,并能运用公式解决实际问题。

  教具准备:

  多媒体课件

  学具准备:

  每人准备一张平行四边卡纸,一把剪刀

  教学过程:

  一、多媒体出示复习题:计算平行四边的高和底。

  二、新课

  (一)情境导入:

  师:同学们,有个施工队的设计人员这样设计了两个花坛(多媒体出示设计图:一个长方形,一个平行四边形)你会求它们的面积吗?你知道哪一个花坛的面积大吗?

  生:我会求长方形的面积,平行四边形的面积没有学

  师:这一节课我们就来一起探索平等四边形的面积计算公式。(板书课题:平行四边的面积)

  (二)探索新知:

  1、用数方格的方法探索平行四边形的面积。

  A、师:你能用什么方法求平行四边形的面积

  生:数方格

  师:我们可以用数方格的方法试一试

  (同学们拿出材料)

  师提示:同学们在数方格时,1个方格代表1平方厘米,不满一格的按半格计算。

  让学生在情境中学习数学,使学生认识到生活中有许多数学问题。

  引导学生自己发现问题产生解决问题的强烈意识,变学生的被动听老师讲解为学生的主动探索。

  给学生提出明确的要求,教给他们正确的方法

  B、汇报数的结果

  C、小结

  用数方格的方法可以算出平行四边形的面积,但不精确,而且较大的面积也不好算,还有更好的方法吗?

  2、探究活动:

  a、师:既然同学们都意识到到平行四边形的面积与长方形有关,那我们能否把平行四边形转化成一个长方形来计算它的面积?

  给学生思考的时间,让学生观察手中的平行四边形,思考如何来操作。

  B、让学生动手实践,老师注意巡视和个别指导。

  c、让学生互相交流自己的方法

  学生在一般情况下可能会有以下两种割补的方法,都应给予肯定。

  有些同学通过割补拼出的图形可能不是长方形而是正方形,这时应通过长方形和正方形的关系来加以说明。

  d、引导学生小组讨论

  师:观察拼出的长方形和原来的平行四边形,你发现了什么?(同时出示问题引导学生思考交流)

  思考题:

  ①拼出的长方形和原来的平行四边形相比,面积变了没有?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③你能根据长方形面积的计算公式推导出平行四边形的面积计算公式吗?

  鼓励学生大胆猜测,想像,为下一步探索提供思路

  对学生的大胆猜测给以鼓励,创设民主和谐的学习氛围。

  给学生探索的`素材,探索的空间,培养学生勇于探索,勤于思索的精神。

  e、让学生叙述自己的推导过程,全班交流

  f、利用多媒体课件演示,平行四边形割、移、补的过程,学生注意观察。

  老师边演示边推导:我们把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,这个平行四边形的底和长方形的长相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  板书:平行四边形面积=底×高

  长方形面积=长×宽

  3、平行四边形面积计算公式的应用

  a、师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以怎样表示呢?

  让每个学生都在练习本上写一写

  生回答:S=ah(同时在黑板上标示出来)

  b、解决问题:

  多媒体出示“做一做”:学生自己读题,然后尝试解答,指一名学生起来说一说自己的是如何解答的。

  三、拓展练习:

  1、逐一完成多媒体课件作业。

  2、完成书中的练习。

  四、全课总结:

  师:本节课你学会了什么?

  你收获了什么?

  板书设计

  平行四边形面积

  1、数方格法

  2、转化法平行四边形平移

  长方形=长×宽

  平行四边形面积=底×高

《平行四边形的面积》教学设计8

  教学目标:

  1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。

  2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。

  3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。

  教学重点:

  使学生理解和掌握平行四边形面积公式并会应用。

  教学难点:

  理解平行四边形面积计算公式的推导过程。

  教具、学具准备:

  平行四边形纸片、剪刀及电脑课件、三角板。

  教学流程

  (一)创设情境,设疑引入

  谈话:出示两个美丽的花坛(课件呈现)。

  提问:请大家观察一下,这两个花坛哪一个大呢?

  师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?

  然后给出长方形的长和宽让学生计算长方形的面积。

  提问:那平行四边形的面积你会算吗?从而导入新课。

  板书课题:平行四边形的面积

  (设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的。欲望,感受数学与生活的密切联系。)

  操作探索,获取新知

  1、数方格感知平行四边形和长方形之间的关系

  (1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)

  (2)汇报交流自己的发现。

  (3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?

  小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

  (设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)

  2、应用“转化”思想,引入割补、平移法、

  (1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)

  (2)精彩展示:要求边讲边操作。

  提问:为什么都要转化成长方形?

  为什么一定要沿着高剪开呢?

  接着电脑演示其它方法,渗透割补、平移法

  (设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)

  3、建立联系,推导公式

  (1)小组合作探索:

  a、原来的平行四边形转化成长方形后,什么变了?什么没变?

  b、拼成长方形的长与原来平行四边形的底有什么关系?

  c、拼成长方形的宽与原来平行四边形的高有什么关系?

  d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?

  (2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

  提问:用字母怎么表示呢?自学课本81页。

  学生回答s=ah(板书)

  提问:s、a、h分别表示什么呢?

  提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

  (设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)

  (二)巩固应用,内化新知

  a、前面的花坛题

  b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?

  (教师巡视,收集典型的错误,强调书写格式,对应的底和高)。

  (设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)

  (四)课堂总结,深化新知

  师:同学们,通过今天的学习,你有什么收获呢?

  (设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)

  课后反思:

  通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的'教训。

  ●成功经验

  一、注重采用“自主探究、合作交流”的学习方式。

  尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。

  二、注重数学方法和数学思想的渗透。

  在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。

  三、注重运用现代教学手段辅助课堂教学。

  这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。

  ●失败教训

  一、在教学中个别地方没有给学生留有足够的思考时间。

  比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。

  二、教学中的细节问题注意不够。

  例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。

  总之,教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!

《平行四边形的面积》教学设计9

  一、教材分析与学生分析

  1、教材分析:小学数学教材中关于几何初步知识的安排特点是:第六册教材中安排了长方形和正方形的面积计算;第八册教材中安排了三角形的认识,清楚了三角形的特征及底和高的概念,而本册(第九册)教材是在先安排了平行四边形特征的基础上,再安排学习“平行四边形面积的计算"的。所以要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式的掌握,直接与学习三角形和梯形的面积公式有着直接的关系。

  2、学生分析:五年级学生在不断的学习过程中已经具备了一定的观察能力、分析交流等能力,进行小组合作和交流时,大多数学生能较清晰地表达出自己的主张和见解,绝大部分学生愿意通过自主思考,小组内和全班范围内交流的学习方式来提出自己对问题的认识。但在学习中,教师必要的引导与帮助也是他们不可缺少的外力因素。学生已经掌握的平行四边形特征和长方形面积的计算方法,都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  二、教学目标

  《数学课程标准》提出了重视学生学习过程的全新理念,学生是学习的主人,新课程要求遵循学生学习数学的'心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段引导每一个学生积极主动的参与学习过程。

  基于对课标的理解和对教材学情的把握。我确定了如下的学习目标以及重点、难点:

  1、知识目标:让学生通过操作和探索,推导出平行四边形的面积计算公式,会计算平行四边形的面积。

  2、能力目标:通过数、剪、移、拼等活动,培养学生的动手能力和归纳探索能,。渗透转化的数学思想。

  3、情感目标:培养学生学习数学的兴趣,以及积极参与、团结协作的精神。

  重点:平行四边形面积的计算方法。

  难点:平行四边形面积的推导过程。

  三、教具准备

  平行四边形纸片,剪刀,方格挂图。

  四、教学方法

  《数学课程标准》中明确指出:数学教学活动必须建立在学生的认知发展水平与已有的知识经验上,教师应激发学生饿学习积极性,想学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,基于这个理念,并根据本节课教材的特点和学生的实际情况,我采用了“创设情境,激发兴趣”,“合作交流,探究讨论”,“适当运用,体验成功”,“总结反思,拓展升华”这四个环节进行展开教学,以数学活动为线索安排教学内容,结合讲授,演示,练习和小组合作等方法,促进学生自主参与探究和交流。

  五、教学过程

  1、创设情境,激发兴趣

  为了绿化校园,各班都承担了些校园的平整任务,这是五(1)班接受到的任务,挂图出示:一块近似平行四边形的不规则的地,“你能帮忙计算出这一块绿化区的面积是多少吗?说说你的想法?”学生运用数格子的方法求面积,接着引出探究的问题:如果很大的一个平行四边形,我们数不过来的时候,怎么求面积呢?

  2、合作交流,探究讨论

  在操作之前先让学生思考以下几个问题:

  (1)你想把平行四边形转化成我们熟悉的什么图形?

  (2)想象一下转化后的图形的样子,你打算怎样转化?

  (3)通过比较转化成的图形和平行四边形,你有什么发现?

  同位之间先交流一下自己的想法,然后汇报。这个时候可以分发课前准备好的平行四边形的卡纸,运用“割补法”能把平行四边形分割成什么图形?学生边演示边汇报。有的是沿着平行四边形的一条高将其剪成了一个直角三角形和一个梯形后通过平移拼成了一个长方形;有的是沿着平行四边形的一条高将其剪成了两个梯形后通过平移拼成了一个长方形;还有的是沿着平行四边形的两条高将其剪成了两个三角形和一个长方形或正方形后拼成了一个长方形。且可能发现原平行四边形的面积和转化成的长方形面积相等,原平行四边形的底和转化成的长方形的长相等,原平行四边形的高和转化成的长方形的宽相等。在学生充分认识到这一点后紧接着追问:“长方形的面积公式是长×宽,那你能根据它们之间的关系想想平行四边形的面积公式是怎样的吗?”从而推导出平行四边形的面积公式。

  3、适当运用,体验成功

  (1)结合课开始的那个求平行四边形绿化区面积的题,运用公

  式再次求出面积,体会公式运用的简便之处。

  (2)有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少分米?看谁猜出的答案最多。并说明等以后学习了分数,还会有更多的答案。

  4、总结反思,拓展升华

  说说你这节课的收获,鼓励学生先回答,然后再总结,使学生在回顾所学知识的同时,从知识、技能等方面加以归纳,有利于学生熟练掌握和运用知识,再次体会学习的方法。

  六、对于本节课设计的说明:

  首先运用生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。让学生掌握用数来计算平行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了平行四边形的面积=底×高。采用动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

  《数学课程标准》指出:要注重对学生学习过程的评价,要恰当评价学生的基本知识和基本技能,要重视对学生发现问题,解决问题等能力的评价,针对这一理念,在这节课的教学中,我会鼓励学生大胆猜想,说出自己的见解,无论学生回答正确与否,都要找出其闪光点,及时肯定,给予鼓励和赞扬,对于学习过程中的一些生成性问题,也要进行及时而有效的解决。

《平行四边形的面积》教学设计10

  教学目标

  1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

  2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。

  3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。

  4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。

  难点平行四边形面积公式的推导过程。

  教具

  1、多媒体计算机及课件;

  2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。

  教学过程

  一、质疑引新:

  1、(电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

  (出示平行四边形)这又是什么图形?指出平行四边形的底和高?

  2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]——————————请同学们打开课本69页。

  二、引导探求:

  ㈠、提出问题:

  1、用数方格法求平行四边形的面积

  ⑴、谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。

  ⑵、数出方格图中平行四边形的`面积。提问:

  A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)

  B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?

  ⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?

  2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。

  1平方厘米

  3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?

  电脑逐步显示:平行四边形的面积=长方形的面积。

  平行四边形的底=长方形的长;

  平行四边形的高=长方形的宽;

  引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!

  电脑展示:

  (1)底、高、不变,面积不变。

  (2)底、高改变,面积变化。

  你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?

  ㈡、推导公式:

  1、小组合作研究:

  长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)

  ⑴、怎样剪拼才能将平行四边形转化成长方形?

  ⑵、转化后的图形与原平行四边形有什么关系?

  (要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)

  2、各小组实验操作,教师巡视指导。

  3、各小组交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、电脑演示各种转化方法。

  4、小组合作讨论归纳总结规律:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的图形面积怎样计算?

  ⑷、小组上台汇报,指着图形说一次得出:

  因为:长方形的面积=长×宽

  所以:平行四边形的面积=底×高(同位指着图形说)

  7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“、”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a、h或S=ah(板书)。

  ㈢、巩固公式:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

  ㈣、应用解决:

  1、自学教材P70例题

  下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)

  板书:32、6×8、4≈274(平方米)

  答:它的面积约是274平方米、

  (挑一学生的作业投影评讲)

《平行四边形的面积》教学设计11

  教学目标:

  1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。

  2、通过操作、分析讨论等活动,培养学生

  动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。

  3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。

  4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

  教学重点:

使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。

  教学难点:

能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。

  教学过程:

  一、情景引入

  1、联系实际选择建房用地。

  (1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?

  (2)联系刚才的选择地的情况,让学生比较两块地的大小情况。

  让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?

  (3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……

  二、探究新知

  1、面积计算公式的推导:

  引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?

  (1)讲解相关的要求。明确小组研究要求。

  (2)操作验证。巡视,个别指导。

  (3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。

  问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)

  (4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。

  引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)

  教师逐步点击交互,得出:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  (5)用字母表示面积计算公式。

  (6)小结。(明确转化的方法。)

  2、面积计算公式的应用:

  (1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。

  讨论后,给出底和高,进行计算。

  (2)计算长方形面积,再次通过计算的方法说明两块地面积相等。

  (3)试一试:计算平行四边形的面积。

  3、教学小结。进行推导:

  (1)明确研究的要求。

  (2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)

  (3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。

  (4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。

  (5)了解认识、明确:S=a×h,S=a·h或者S=ah。

  (6)进行小结。

  4、初步运用公式。

  (1)教学试一试,(2)练一练。

  三、巩固应用

  1、练习二“第1题”。

  先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的.长方形之间联系的认识。这是一个反向建构的过程。

  2、练习二“第2题”。

  可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。

  3、练习二“第3题”。

  这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。

  4、练习二“第5题”。

  让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。

  四、课堂总结

  今天学习了什么?你有什么收获?(让学生自由发挥。)

  教学反思:

  上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:

  (一)创设生活情境,激发探究欲望

  小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。

  (二)重视学生的自主探索和合作学习

  动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……

  在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。

  (三)培养学生的问题意识

  问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。

《平行四边形的面积》教学设计12

  教学内容:

  小学数学五年级上册第87——88页

  教学目标:

  知识与技能目标:

  理解并掌握平行四边形面积计算公式。

  过程与方法目标:

  能够运用公式解决实际问题。

  情感态度与价值观:

  通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。

  教学重难点:

  (1)教学重点:平行四边形面积计算公式的推导和运用。

  (2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。

  教学用具:

  1、课件

  2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。

  学情分析:

  这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。

  教学过程:

  一、激情导课

  (大屏幕出示校园情景图)

  同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)

  看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)

  1、探究平行四边形面积计算公式。

  2、运用公式解决生活中的实际问题。

  师随着学生的回答在课题前板书:探究和运用

  师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)

  二、民主导学

  任务一:自主探究平行四边形的面积计算方法。

  同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)

  任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。

  提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的.方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)

  自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。

  展示交流:

  1、先请数方格的小组上台展示。

  预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。

  我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。

  (对小组进行评价)

  师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。

  2、请用割补法的小组上台展示自己的研究成果。

  预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。

  (师随着生的表述板书)

  长方形的面积=长×宽

  平行四边形的面积=底×高

  (对小组进行评价)

  预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......

  (对小组进行评价)

  预设:(3)、师演示。

  师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。

  师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)

  任务二:解决问题

  出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

  自主学习:独立在练习本上解答,完成后与小组内同学交流。

  展示交流:注意指导学生的书写格式。

  三、检测导结

  1、计算下面每个平行四边形的面积。

  2、已知下面图形的面积和底,怎样求出它的高?

  以上三题,做对一道得一颗星,全部做对得三颗星。

  集体订正,组内互批。

  反思总结:请同学们谈谈这节课的收获吧!

《平行四边形的面积》教学设计13

  设计说明

  在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:

  1.动手实践,多维探究。

  数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。

  2.分层运用新知,逐步理解内化。

  新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的`所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。

  课前准备

  教师准备 PPT课件 学情检测卡 课堂活动卡 平行四边形卡片 剪刀

  学生准备 练习卡片 平行四边形卡片 剪刀

  教学过程

  ⊙创设情境,导入新课

  1.常用的面积单位有哪些?

  2.出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6 m,宽是4 m,怎样计算它的面积呢?

  根据“长方形的面积=长×宽”,得出长方形花坛的面积是24 m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习平行四边形面积的计算。

  (板书课题:平行四边形的面积)

  设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。

  ⊙操作实践,探究新知

  一、数方格法。

  1.复习旧知。

  师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。

  (出示方格纸)

  师:这是什么图形?(长方形)如果一个方格代表1 m2,那么这个长方形的面积是多少?(24 m2)

  师:这是什么图形?(平行四边形)如果一个方格代表1 m2,自己在方格纸上数一数,这个平行四边形的面积是多少?

  师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。

  2.填写并观察表格。

  设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。 3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。

  二、割补法。

  1.讨论:你们准备怎样将平行四边形转化成长方形呢?

  预设 生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。

  2.组织学生操作,教师巡视指导。

  3.教师示范平行四边形转化成长方形的过程。

  (1)先沿着平行四边形的高剪下左边的直角三角形。

  (2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。

  4.观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)

  (1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?

  (2)这个长方形的长与原来的平行四边形的底有什么关系?

  (3)这个长方形的宽与原来的平行四边形的高有什么关系?

  (4)思考后填空。

  ①原来的平行四边形的底与长方形的( )相等。

  ②原来的平行四边形的( )与长方形的( )相等。

  ③这两个图形的( )相等。

《平行四边形的面积》教学设计14

  教材分析

  义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。

  学情分析

  1.学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。

  2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。

  教学目标

  知识与技能

  1.使学生理解和掌握平行四边形的面积计算公式。

  2、会正确计算平行四边形的面积。

  过程与方法:

  1.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,

  2、发展学生的空间观念。

  情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。

  教学重点和难点

  重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。

  教学过程

  一、复习导入

  1.什么叫面积?常用的面积计量单位有那些?

  2.出示一张长方形纸,他是什么形状?它的面积怎么算?

  二、探究新知

  1、情景导入:出示长方形、 平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?

  板书课题:平行四边形的面积

  2.用数方格的方法计算面积。

  (1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的.面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

  说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

  (2)同桌合作完成。

  (3)汇报结果,可用投影展示学生填好的表格。

  (4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  2.推导平行四边形面积计算公式。

  (1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

  (2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

  a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

  b.请学生演示剪拼的过程及结果。

  c.教师用教具演示剪—平移—拼的过程。

  (3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。出示讨论题:

  ①拼出的长方形和原来的平行四边形比,面积变了没有?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

  小组汇报,教师归纳:

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

  这个长方形的长与平行四边形的底相等,

  这个长方形的宽与平行四边形的高相等,

  因为 长方形的面积=长×宽,

  所以 平行四边形的面积=底×高。

  3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

  S=ah

  三、 应用反馈。

  1.出示教材练习十五第1题。读题并理解题意。

  学生试做,交流作法和结果。

  2.讨论:下面两个平行四边形的面积相等吗?为什么?

  学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)

  四、课堂小结。通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)

《平行四边形的面积》教学设计15

  教学目标:

  1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2、使学生通过观察、操作、比较等活动,初步认识转化的方法,培养学生的观察、分析、概推导能力,发展学生的空间观念。

  3、培养学生的合作意识和探究精神。

  教学重点:

  理解公式并会计算平行四边形的面积。

  教学难点:

  推导平行四边形的面积计算公式。

  教具准备:

  每人准备一个平行四边形纸片和一把剪刀,多媒体课件。

  教学过程:

  一、导入(媒体出示:)

  1、认识图形。

  2、口算长方形的面积。

  3、回顾平行四边形的特征。

  4、观察主题情景图:明明和芳芳争论场景:一块长方形花坛,一块平行四边形花坛。哪一块大呢?板书课题:平行四边形的面积

  二、自主学习

  1、学生用数方格的'方法数一数,并把结果记载到80页的表格中。

  2、思考:从表格中的数据,你发现了什么?(它们的面积相等)为什么会出现这样的结果?(因为通过数出的数据显示:长方形的长和宽分别和平行四边形的底和高相等。)

  3、思考:如果不数方格,能不能计算出平行四边形的面积呢?能不能把平行四边形转化成我们已经学习过的图形来求面积?(学生交流找寻方法:可以用剪、拼、的方法把平行四边形转化成别的图形)

  4、动手操作:学生可以独立操作,也可以同桌相互合作,自主探究平行四边形面积公式的由来,教师巡视。

  5、提问:通过刚才的操作,你发现了什么?学生汇报交流:平行四边形的底和拼得的长方形的长相等,底边上对应的高和长方形的宽相等,所以平行四边形的面积也就等于拼得的长方形的面积。(教师根据学生回答媒体演示过程)

  板书:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  6、学习用字母表示公式:我们用S表示平行四边形的面积,a表示它的底,h表示它的高,计算公式用字母如何表示?(根据学生回答板书:S=a×h)

  7、思考:要求平行四边形的面积,必须要知道哪些条件?(底和高)

  教师强调:平行四边形有无数条高,底乘的高一定要是对应边上的高才是它的面积。

  三、巩固提高

  1、反馈:(媒体展示)口算平行四边形的面积,点学生回答。集体订正时强调:书写格式和单位。重点提醒:不对应底和高平行四边形面积。

  2、作业:练习十五第1题,第2题。

  3、拓展:(媒体展示)

  (1)下面哪个平行四边形的面积大呢?为什么?

  (2)一个长方形拉成一个平行四边形后,有哪些变化?

  四、课堂小结

  本节课你学会了什么?平行四边形的面积公式是怎么推导来的?要求平行四边形的面积,必须知道那些条件?

【《平行四边形的面积》教学设计】相关文章:

《平行四边形的面积》教学设计05-20

平行四边形的面积教学设计07-22

面积教学设计04-07

《圆的面积》教学设计11-22

《认识面积》教学设计08-17

圆的面积教学设计04-29

梯形的面积教学设计06-08

圆的面积教学设计07-13

《圆的面积》的教学设计05-21