- 相关推荐
反比例函数教学设计
作为一名为他人授业解惑的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。如何把教学设计做到重点突出呢?以下是小编整理的反比例函数教学设计,仅供参考,大家一起来看看吧。
反比例函数教学设计1
[教学目标]
1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.
2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.
[教学过程]
1.回顾、梳理本章的知识:
如同已经学过的有关方程、函数的内容一样,本章内容分为3块:
(1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;
(2)数学研究:反比例函数的图象与性质;
(3)用数学解决问题:反比例函数的应用.
2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:
(1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的`部分确定函数的特征;
(2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;
(3)形数结合——函数的图象与性质的综合应用
2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△x
POD的面积为________
3. 设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.
例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。
(1)写出药物燃烧前、后y与x的函数关系式;
(2)研究表明,当空气中每立方米的含药量低于1。6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?
反比例函数教学设计2
1.联系生活,从生活中引入,激发了学生学习兴趣。
数学来源于生活,又服务于生活。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。程老师从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有数学。如,新课开始时,程老师利用“张红想知道旗杆的高度”,从这样一个学生身边的例子引入,不仅让学生感受了数学与生活的紧密联系,还有效地设置了悬念,激发了学生学好本节课知识的兴趣和决心。
2.有效地处理教材,让学生亲身经历数学模型的形成过程。
《比例的意义》这部分知识比较枯燥,也比较抽象,不易让学生直观的理解,与实际生活较远。而程老师处理的很好,把无声的、枯燥的教材进行了有声的、精彩的演绎。在这一节课中,程老师运用各种方法,通过对同一比例不同大小的.国旗的长宽比例的探究,运用计算比值、课件演示、交流讨论、自主写出比例等等一系列的方法进行由浅入深地自主探索,实现了学生对“比例的意义”这一知识的真正理解和运用。
3、服务于生活,回到生活中去,解决生活中的实际问题。
在以上抽象出“数学模型”的基础上让学生进行拓展应用,体现“数学从生活中来,到生活中去的”思想,程老师在课的最后出示“大自然中的比例”,让学生利用学到的知识解决生活中的实际问题,既让学生感受了数学学习的价值,又和课的开始形成了呼应。圆满中结束本课的学习,学习效果很好。
反比例函数教学设计3
教学目标:
1、知识与能力目标:
(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。
(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。
2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
教学重点和难点
重点:进一步掌握反比例函数的概念、图像、性质并正确运用。
难点:反比例函数性质的灵活运用。数形结合思想的应用。
教学方法:
探究——讨论——交流——总结
教学媒体:
多媒体课件。
教学过程:
一、知识梳理:
同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?
课件展示:
1、反比例函数的意义
2、反比例函数的图象与性质
3、利用反比例函数解决实际问题
二、合作交流、解读探究
(一)与反比例函数的意义有关的问题
课件展示:
忆一忆:什么是反比例函数?
要求学生说出反比例函数的意义及其等价形式
巩固练习:课件展示:
1、下列函数中,哪些是反比例函数?
(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4
2、写出下列问题中的函数关系式,并指出它们是什么函数?
⑴当路程s一定时,时间t与平均速度v之间的.关系。
⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。
3、若y=为反比例函数,则m=______
4、若y=(m-1)为反比例函数,则m=______ 。
(二)运用反比例函数的图象与性质解决问题
1、反比例函数的图象是
2、图象性质见下表(课件展示):
3、做一做(课件展示)
(1)函数y=的图象在第______象限,当x<0时,y随x的增大而______ 。
(2)双曲线y=经过点(-3,______)。
(3)函数y=的图象在二、四象限内,m的取值范围是______ 。
(4)若双曲线经过点(-3,2),则其解析式是______.
(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的大小关系(从大到小)为____________ 。
(三)综合运用(课件展示)
一次函数的图像y=ax+b与反比例函数y=交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围
三、随堂练习
见课件
四、小结
1、反比例函数的意义
2、反比例函数的图象与性质
五、作业:
配套练习22页21、22题
反比例函数教学设计4
第一课时
教学设计思想
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
教学目标
知识与技能
1.能灵活列反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重难点
重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学方法
启发引导、合作探究
教学媒体
课件
教学过程设计
(一)创设问题情境,引入新课
[师]有关反比例函数的`表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
反比例函数教学设计5
教学目标:
1使学生理解什么是相关联的量。
2掌握正比例的意义及字母表达式。
3学会判断两个量是否成正比例关系。
教学过程:
一、导入
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的'量。
师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?
(随着学生的回答,师板书:10/1=10.20/2=10.30/3=10.40/4=10……)
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)
1表中有( )和( )两种量。
2路程是怎样随着时间的变化而变化的?
3任意写出三个相对应的路程和时间的比,并算出它们的比值。
4比值实际上表示( ),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)
师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?
(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)
反思:
从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。
以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。
反比例函数教学设计6
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y= tx
k可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的`概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
反比例函数教学设计7
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1.经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2.通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:
理解和领会反比例函数的概念.
教学难点:
领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1);(2);(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1);(2);(3)
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的'概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
反比例函数教学设计8
教学内容:
九年义务教育六年制小学数学第十二册P64——65
教学目标:
1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:
认识反比例的意义
教学难点:
掌握成反比例量的变化规律及其特征
设计理念:
课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。
教学步骤教师活动学生活动
一、复习铺垫
1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?
2、判断下面两种量是否成正比例?为什么?
时间一定,行驶的.路程和速度
除数一定,被除数和商
3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?
4、导入新课:
如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充
二、探究新知1、出示例3的表格(略)
学生填表
2、小组讨论:
(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?
(2)你能找出它们变化的规律吗?
(3)猜一猜,这两种量成什么关系?
3、全班交流
学生初步概括反比例的意义(根据学生回答,板书)
4、完成“试一试”
学生独立填表
思考题中所提出的问题
组织交流,再次感知成反比例的量
5、抽象表达反比例的意义
引导学生观察例3和“试一试”,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用怎样的式子来表示?
反比例函数教学设计9
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点:掌握从实际问题中建构反比例函数模型.
教学难点:从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等).
2.学生准备:(1)复习已学过的反比例函数的图象和性质,(2)预习本节课的内容,尝试收集有关本节课的情境资料.
教学过程
一、创设问题情境,引入新课
复习:反比例函数图象有哪些性质?
反比例函数 y?k
x 是由两支曲线组成,
当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;
当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.
二、讲授新课
[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?
(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?
(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系.而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题.
师生行为:
先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动.
在此活动中,教师有重点关注:
①能否从实际问题中抽象出函数模型;
②能否利用函数模型解释实际问题中的现象;
③能否积极主动的阐述自己的见解.
生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=
所以储存室的底面积S是其深度d的反比例函数.
104 生:根据函数S= ,我们知道给出一个d的值就有唯一的S的值和它相d
对应,反过来,知道S的一个值,也可求出d的值.
题中告诉我们“公司决定把储存室的'底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104 ,得500=,解得d=20. dd
即施工队施工时应该向下挖进20米.
生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?
104 根据S=,把d=15代入此式子,得 d
S=104 ≈666.67. 15104. d
当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要. 师:大家完成的很好.当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,
三、巩固练习
1、(基础题)已知某矩形的面积为20cm2:
(1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;
(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,
求其长为多少?
(3)如果要求矩形的长不小于8cm,其宽至多要多少?
2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗.
(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?
(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?
设计意图:
让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望.
师生行为:
由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题.
生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米.
13000 所以,S·d=1000, S= . 3d
(2)根据题意把S=100cm2代入S=30003000中,得 100= .d=30(cm). dd
所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.
3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.
(1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?
(2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?
四、小结
1、通过本节课的学习,你有哪些收获?
列实际问题的反比例函数解析式(1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;(2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。
2、利用反比例函数解决实际问题的关键:建立反比例函数模型.
五、布置作业
P54—55.第2题、第5题
六、课时小结
本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想.
反比例函数教学设计10
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点:描点画出反比例函数的图象
教学用具:直尺
教学方法:小组合作、探究式
教学过程:
1、从实际引出反比例函数的概念
我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例
即vt=S(S是常数);
当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(S是常数)
(S是常数)
一般地,函数 (k是常数, )叫做反比例函数.
如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供
2、列表、描点画出反比例函数的图象
例1、画出反比例函数 与 的图象
解:列表
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图
一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)
(1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数 的图象,在每一个象限内,y随x的'增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数 的图象,在每一个象限内,y随x的增大而减小.
同样可以推出 的图象的性质.
(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.
函数 的图象性质的讨论与次类似.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业 习题13.8 1-4
反比例函数教学设计11
教学目标
知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点
教学难点 1) 重点:画反比例函数图象并认识图象的特点.
2)难点:画反比例函数图象.
教学关键 教师画图中要规范,为学生树立一个可以学习的模板
教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式
教学手段 教师画图,学生模仿
教具 三角板,小黑板
学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法
教学过程
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)
内 容 设计意图
一:课前检测:
1.什么叫做反比例函数;
(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)
2.反比例函数的定义中需要注意什么?
(1)k为常数,k0
(2)从y= 中可知x作为分母,所以x不能为零.
二:激发兴趣 导入新课
问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?
y=kx+b y=kx
K0 一、二、三 一、三
b0 一、三、四
K0 一、二、四 二、四
b0 二、三、四
问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?
可以
问题3:画图象的'步骤有哪些呢?
(1)列表
(2)描点
(3)连线
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
生:我知道反比例函数的解析式为 且k不等于0
生:我知道反比例函数的图象是曲线。
师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?
生:该研究反比例函数图象和性质了。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
三:探求新知
学生思考、交流、回答。
提问:你能画出 的图象吗?
学生动手画图,相互观摩。
(1) 列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
议一议
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交
学生先分四人小组进行讨论,而后小组汇报
做一做
作反比例函数 的图象。
学生动手画图,相互观摩。
想一想
观察 和 的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点
相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限
四:归纳与概括
反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第___、___象限,
(2) 当 k0 时,两支曲线分别位于第___、___象限.
五:课堂练习
(1)
(2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;
六:形成性检测
(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________
(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )
(A) (B) (C) (D)
(3)画 和 的图象
七:反馈拓展
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.
八:作业布置
(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象
(2) 习题5.2.1
(3)预习下一节 反比例函数的图象与性质II
复习上节主要内容
(3分钟)
(5分钟)
运用类比研究一次函数性质的方法,来研究反比例函数图象与性质
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:(1)x取绝对值相等符号相反的数值
(2) x取值要尽可能多,而且有代表性
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)
活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线
(4分钟)
培养学生归纳,语言表达能力
此中注意分类讨论思想的应用
巩固反比例函数图象性质
(2分钟)
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)
巩固作反比例函数图象的步骤,预习下一节课内容
教学反思与检讨:
本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。
由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。
在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。
反比例函数的图象与性质
一:画出 的图象
(1)列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
注:(1)x取绝对值相等符号相反的数值
(2)x取值要尽可能多,而且有代表性 三:练习
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
二:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第一、三象限,
(2) 当 k0 时,两支曲线分别位于第二、四象限.
反比例函数教学设计12
教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.
教学目标:
知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。
情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:理解比例的意义和基本性质.
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。
教学准备:课件
教学过程:
一、激趣导入
1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?
2、请同学们看大屏幕,课件出示P32页四幅图。
二、探究新知
1、比例的意义
师问:
①这四幅图中有什么共同的事物?(齐说)
②这四面国旗出现在什么场合或什么地点?(指生回答)
③这四面国旗的长与宽分别是多少?(指生回答)
④这四面国旗的大小相同吗?
说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。
⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)
⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的.大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)
师问:
①现在我们选取其中的两个比,如:2.4:1.6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。
那么我们能用什么符号可以把它们连接成等式?生:等号
谁来用等号把这两个比写成等式?师板书:2.4:1.6=60:40
②如果用比的分数形式来表示这个式子也可写成:或2.4/1.6=60/40
③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)
师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)
师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义
问题:
①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)
②判断两个比能不能组成比例,关键要看什么?
③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)
我们已经了解了比例的意义,下面我来考一考大家:
课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。
2、比例各部分名称
师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?
学生回答上面的问题,教师课件演示。
做一做:指出下面比例的内项和外项(课件出示)
4.5∶2.7=10∶6240/160=144/96
3、比例的基本性质(课件出示)
观察:2.4∶1.6=60∶40
思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)
用下面的比例验证你的发现:
6∶10=9∶158∶2=20∶5
你能用一句话把发现的规律说出来吗?(找3名同学回答)
下面我们计算2.4:1.6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)
师:看大屏幕(课件出示)2.4/1.6=60/40
问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?
指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件
演示2.4/1.6=60/40→2.4X40=1.6X60
4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?
课件出示:你能根据比例的基本性质判断10:2与2.5:0.5是否可以组成比例?
讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。
因为10X0.5=52X2.5=5,所以假设成立,10:2与2.5:0.5能组成比例,即10:2=2.5:0.5
5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示
6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?
生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。
三、巩固新知(课件出示)
做一做,相信你能行!
1、判断
①10∶5=2是比例。()
②在比例里,两个外项的积与两个內项的积的差是O、()
2、填空
①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()
②2:9=8:()
3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)
四、通过这节课的学习,说说你有什么收获或学到了那些知识?
五、课后作业:搜集生活中的比例,看看比例在生活中的作用?
板书设计比例的意义和基本性质
2.4:1.6=3/260:40=3/2
2.4:1.6=60:40或2.4/1.6=60/40表示两个比相等的式子叫做比例。
2.4:1.6=5:10/32.4;1.6=15:10
5:10/3=15:105:10/3=60:40
60:40=15:10
2.4X40=96在比例里,两个外项的积等于两
1.6X60=96个内项的积。这叫做比例的基本性质。
《比例的意义和基本性质》教学反思
本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。
教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。
在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。
习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。
通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。
我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。
本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。
反比例函数教学设计13
教学目标:
1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、创设情境,导入新课
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)
师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)
师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)
好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)
二、新授
师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?
(学生板演,观察到比值相等,教师板书:两个比相等)
师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的比)
教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。
请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)
(教师再强调:一定是比值相等的两个比才能组成比例。)
师:你还能从四面国旗中找出哪些比例?
(学生写在练习本上,然后汇报。教师板书)
师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的.形式吗?怎么写?(学生口答)
?师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?
学生从形式上区分:比由两个数组成;比例由四个数组成。
学生从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。
三、巩固应用
(一)数的比例
课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)
(二)形的比例
出示两个具有放大关系的三角形
师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)
(三)生活中的比例
师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!
1、课本41页第3题(学生独立完成,小组订正交流。)
2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)
四、总结
师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)
师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。
反比例函数教学设计14
教学内容:
义务教育课程标准实验教科书人教版数学六年级下册。
教学目标:
1.理解和掌握比例的意义和基本性质。
2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。
3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。
教学过程:
一、认识比例的意义
1.出示小红、小明在超市购买练习本的一组信息。
(1)根据表中信息,你能选出其中两个量写出有意义的比吗?
(学生思考片刻,说出了1.2∶3.2∶5.1.2∶2.3∶5等多个比,并说出每个比表示的意义。教师适时板书。)
(2)算算这些比的比值,说说你有什么发现。
(学生说出自己的发现,教师用“=”连接比值相等的两个比。)
(3)说说什么叫比例。
(学生各抒己见,师生共同归纳后板书:比例的意义)
评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。
2.即时训练。
A.判断下面每个式子是不是比例,依据是什么?
(1)10∶11(2)15∶3=10∶2
a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。
b.剩下的(1)(2)(4)三个比中有没有能组成比例的?
c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?
评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。
3.教学比例各部分的名称。
(1)引导学生读教材(相关内容),认识比例各部分名称。
(2)集体交流。(教师板书:内项、外项)
(3)把比例写成分数形式,指出它的内、外项。
(4)任意写一个比例,同桌相互说一说比例各部分的名称。
二、探究比例的基本性质
1.填数。
(1)出示比例8∶()=()∶3。想一想,这两个空可能是哪两个数。
〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24.2和12.0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕
(2)观察思考:在填这些数的过程中,你有什么发现?
(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)
(3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)
A.先验证黑板上的比例式,再验证自己写的比例式。
B.概括比例的基本性质。同桌相互说一说比例的基本性质。
(4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)
评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的.。
2.即时训练。
应用比例的基本性质,判断下面的两个比能否组成比例。
3.6∶1.8和4∶24∶9和5∶10
小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。
三、巩固新知,解决问题
1.猜数游戏。
在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?
3∶5=6∶()()∶5=6∶()3∶5=()∶()
2.你能用3.5.6.10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)
利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)
评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。
总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。
反比例函数教学设计15
素质教育目标
(一)知识教学点
1.使学生理解掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
(二)能力训练点
1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2.培养学生的观察能力、判断能力。
(三)德育渗透点
对学生进一步渗透辩证唯物主义观点的启蒙教育。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教具学具准备:
小黑板、投影片、投影仪。
教学步骤
一、铺垫孕伏
教师出示复习题,回忆有关比的知识。
1.什么叫做比?
2.什么叫做比值?
3.求下面各比的比值:
4.上面哪些比的比值相等?
学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)
二、探究新知
1.比例的意义。
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是______;
第二次所行驶的路程和时间的比是______。
这两个比的比值各是多少?它们有什么关系?
(1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式
(2)由教师告诉学生:象4.5∶2.7=10∶6.80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
师问:什么叫做比例:组成比例的关键是什么?
生答:表示两个比相等的式子叫做比例。(板书)
引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)
(3)做一做
下面哪组中的两个比可以组成比例?把组成的比例写出来。
①6∶10和9∶15
②20∶5和1∶4
第①题由教师引导学生完成,思路如下:
所以:6∶10=9∶15
其余各题分组讨论后由学生独立完成。
(4)填空
①如果两个比的比值相等,那么这两个比就()比例。
②一个比例,等号左边的比和等号右边的比一定是()的。
2.比例的基本性质。
(1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)
(2)让学生看下面这些比例,说出它的外项和内项是多少?
4.5∶2.7=10∶6
6∶10=9∶15
(3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。(师边板书如下)
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
(4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。
(5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)
(板书课题:加上“和基本性质”,使课题完整。)
(6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交x相乘的.积有什么关系?为什么?
指名回答后,师板书:
(7)做一做
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。
6∶3和8∶50.2∶2.5和4∶50
3.阅读课本第9.10页的内容并填空。
三、巩固发展
1.说一说比和比例有什么区别。
讨论后指名说明:
比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。
2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。
3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1)6∶9和9∶12
(2)1.4∶2和7∶10
4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)
2.3.4和6
四、全课小结
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。
五、布置作业练习一第3题。
【反比例函数教学设计】相关文章:
反比例函数教学反思03-23
反比例函数教案01-15
反比例函数教案15篇02-14
反比例的意义教学设计01-20
函数教学反思02-23
《反比例》教学反思03-14
反比例教学反思12-23
八年级数学《反比例函数》说课稿01-11
幂函数的教学反思05-19
函数的概念教学反思06-03