当前位置:9136范文网>教育范文>教学设计>圆柱的表面积教学设计

圆柱的表面积教学设计

时间:2024-03-14 13:25:07 教学设计 我要投稿
  • 相关推荐

圆柱的表面积教学设计

  作为一无名无私奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。怎样写教学设计才更能起到其作用呢?以下是小编为大家整理的圆柱的表面积教学设计,欢迎大家分享。

圆柱的表面积教学设计

圆柱的表面积教学设计1

  教学内容:九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题

  教学目标:1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。

  教具准备:

  圆柱形的物体,圆柱侧面的展开图

  教学重点:理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  教学难点:根据实际情况来计算圆柱的表面积。

  设计理念:教学中注意让学生在引导中发现与理解圆柱的侧面积和表面积的计算方法。先从学生的实际生活入手,通过操作、观察与推理,理解商标纸的面积就是圆柱的侧面积。在此基础上,再引导学生在方格纸上画出圆柱表面积的展开图,利用表象来尝试归纳计算方法。自主实验、自主探索、自主概括是本课的基本特征。

  教学步骤教师活动学生活动

  一.复习回忆一、复习

  1.指名学生说出圆柱的特征.

  2.口头回答下面问题.

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  学生回答后,板书:长方形的面积=长×宽.

  回忆特征,口答。

  二.自主探索,一、认识侧面积的意义和计算方法。

  1.出示例2的情景图,引导学生思考:商标纸的面积大约是多少平方厘米,就是求圆柱的什么?

  2.学生拿出课前准备的'类似例2的物体,摸一摸,看一看,理解得出商标纸的面积就是求圆柱的侧面积。

  师板书:圆柱的侧面积

  3.操作实验,认识侧面积的计算方法。

  (1)请学生先想一想,如果把圆柱侧面的商标纸沿高剪开再展开,它会是什么形状?

  (2)学生拿出贴有商标纸的学具饮料罐,沿着它的一条高剪开,然后展开,观察是什么形状。

  (3)引导生观察,进一步思考得到的商标纸的。长和宽跟圆柱体有什么关系呢?如何计算商标纸的面积?

  (4)概括提升:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?

  师板书:

  圆柱的侧面积=底面周长×高

  长方形的面积=长昂×宽.

  4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?

  5.独立完成“练一练”第1题

  二、认识表面积的意义和计算方法。

  1.出示例3。让学生对照直观图,说说圆柱的侧面和底面的位置,同座互相用学具指一指。

  2.思考:沿高展开后得到的长方形的长和宽分别是多少厘米?两个底面分别是多大的圆?

  3.要求:闭上眼睛想一想,圆柱的展开图是什么形状?

  4.试一试,在书中的方格纸上画出这个圆柱的展开图,再将学生所画的展开图进行交流与展示。

  5.观察展开图,想一想圆柱表面有哪些部分组成?

  6.教师小结,指出圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。

  师板书:圆柱的表面积。

  7.引导学生概括:怎样计算圆柱的表面积?圆柱的表面积与侧面积有什么关系?

  师板书:圆柱的表面积=侧面积+两个底面积

  8.学生在小组里讨论,然后算一算这个圆柱的表面积。教师注意指导学生的答题格式。

  生独立思考

  学生动手操作

  学生联想

  动手操作

  仔细观察、归纳、概括

  学生联想,师相机指导。

  独立练习

  学生用学具指

  借助学具独立思考

  学生进行空间想象

  学生在方格纸上画

  学生进行归纳、概括

  先讨论,再独立算,然后交流汇报

  三.巩固应用

  1.完成“练一练”第2题

  可以先让学生分别算出有关圆柱的侧面积和底面积,再算出侧面积与两个底面积大和。

  2.完成练习六第1题。

  注意指导学生思考问题要求的是圆柱的哪个面。

  3.完成练习六第2题。

  先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?学生独立练习

  小交流,再练习

  四.总结反思1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?

  2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?畅谈体会。

  发散思考

圆柱的表面积教学设计2

  教学目标:

  1、初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面积的含义的同时,培养学生的理解能力和探索意识。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征.

  2、口头回答下面问题.(删掉)

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长宽.

  3、理解圆柱表面积的含义.

  (1)让学生把自己制作的。圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的'侧面积+底面积2

  二、圆柱的侧面积。

  1、圆柱面积的认识

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长高)

  2、侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题

  ①这两道题分别已知什么,求什么?

  ②计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

圆柱的表面积教学设计3

  教学内容:六年级第十二册

  教学课时:第二单元第二课时 教学目标

  1、认识圆柱的表面积,理解圆柱表面积的含义.

  2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.

  3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.

  重点:认识圆柱的表面积,理解圆柱表面积的含义.

  难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:

  1、圆柱体教具一个

  2、学生每人准备圆柱形模型两个;

  剪刀;

  教学过程:

  一、复习引入

  1、圆柱有哪些特征?它各部分名称叫什么?

  2、学生回答后,让学生拿出自己做的模型,指出哪一部分是侧面.

  3、引入新课。

  二、新课教学

  (一)出示学习目标:

  1、理解圆柱的侧面积和表面积的含义。

  2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

  3、认识取近似值的进一法。

  4、学习推导方法。

  (二)圆柱的侧面积

  1、出示自学提示:

  (1)、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?

  (2)、推导出圆柱体侧面积的计算公式。

  小组合作注意:组长负责次序,同学之间尊重他人,懂得谦让,互相帮助。

  2、学生汇报交流。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  3、推导公式。

  侧面积=底面周长×高

  4、口答

  把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的`(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。

  (二)、圆柱的表面积

  1、出示自学提示:(1)、思考怎样求圆柱体的表面积?

  (2)、讨论:求圆柱体的表面积需要知道哪些数据?

  小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。

  2、学生汇报交流。

  3、推导公式。

  圆柱的表面积=底面积×2﹢侧面积

  (三)运用公式计算。

  1、求下面各圆柱体的侧面积。(只列式不计算)(1)、底面周长1.6米,高是0.7米。(2)、底面半径是3.2分米,高是5分米。(3)、底面直径是10厘米,高是25厘米。

  2、求上面各圆柱体的表面积(分步口答)

  3、出示例3 学生独立完成.指名板演,然后小组内交流。

  教师:注意,这里不能用“四舍五入”法取近似值.在实际生活中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫进一法.

  三、课堂小结

  大家回顾一下今天我们学了什么内容?计算时要注意什么? 《圆柱的表面积》教学反思

  屏南实验小学 韦 斌

  整个教学过程,学生兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片通过学生动手动脑,来突破难点;

  引导学生在应用中加深认识,形成能力。

  动手实践,主动探索和合作学习是学习数学的重要方式。而在儿童的精神世界中,这种需要特别强烈。因此,数学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。

  本节课,教师通过让学生动手制作圆柱体模型,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。

  教师为学生提供了基本题以及多向思维的,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。

  总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。

  学习目标:

  1、理解圆柱的侧面积和表面积的含义。

  2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

  3、认识取近似值的进一法。

  4、学习推导方法。

  自学提示:

  1、认真观察自己手中的长方形,思考这个 长方形与圆柱体的哪一部分有关系?

  2、推导出圆柱体侧面积的计算公式。小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。

  把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽 等于圆柱体的(),因为长方形的面积等 于(),所以圆柱体的侧面积等于()。

  自学提示:

  1、思考怎样求圆柱体的表面积?

  2、讨论:求圆柱体的表面积需要知道哪些数据? 小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。

  求下面各圆柱体的表面积

  求下面各圆柱体的侧面积。(只列式不计算)

  1、底面周长1.6米,高是0.7米。

  2、底面半径是3.2分米,高是5分米。

  3、底面直径是10厘米,高是25厘米。

  目标检测:

  一个没有盖的圆柱形铁皮水桶,高 是24厘米,底面直径是20厘米,做这 个水桶要用铁皮多少平方厘米?

  (得数保留整百平方厘米)

  拓展题:

  一个圆柱体的侧面展开是一个边长为 25.12厘米的正方形,求这个圆柱体 的表面积。

  给下面的物体分类。

圆柱的表面积教学设计4

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是x、x和x。

  2、底面是x形,它的面积=x。

  3、侧面是一个曲面,沿着它的'高剪开,展开后得到一个x形。它的长等于圆柱的x,宽等于圆柱的x。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=x,所以圆柱的侧面积=x。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。

  ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的x和x这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由x和x组成。

  (2)圆柱的表面积的计算方法:

  圆柱的表面积=

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的x。需要注意的是厨师帽没有下底面,说明它只有x个底面。

  列式计算:

  ①x帽子的侧面积=

  ②x帽顶的面积=

  ③x这顶帽子需要用面料=

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

  布置学生课下复习本节课内容。

圆柱的表面积教学设计5

  教学内容:

  北师大版六年级数学下册圆柱的表面积。

  教学目的:

  1、理解什么是圆柱的表面积,知道怎样计算圆柱的表面积。

  2、能够利用学具动手操作、动脑思考推理圆柱的侧面积和表面积的计算公式。

  3、能够运用所学知识解决实际问题,知道数学知识应用于生活实际时应结合具体情境。

  4、培养动手操作、动脑思考的习惯和知识迁移的能力。教学重难点:圆柱侧面积计算公式的推理。

  教学准备:

  教师准备:长方体模型、多媒体课件。

  学生准备:圆柱形纸盒、剪刀。

  教学过程:

  一、创设情境,导入新课。教师出示长方体模型。

  提问:(1)长方体的表面积指什么?(六个面的面积之和)(2)如何计算长方体的表面积?(把六个面的面积加在一起)

  多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)

  教师:至少需要用多大面积的纸板?也就是要计算什么?(圆柱的表面积)圆柱的表面积指什么?(三个面的面积之和)

  如何计算圆柱的表面积?(把三个面的面积加在一起)

  教师:圆柱的表面积就是它的三个面的面积之和,要计算圆柱的表面积只需

  把三个面的面积加在一起,这节课我们就来研究圆柱的表面积。(板书课题:圆柱的表面积)

  (由长方体的表面积导入圆柱的表面积,知识的迁移自然,学生容易理解圆柱的表面积)

  二、自主探究,合作学习

  教师:你能试着计算这个圆柱的表面积吗?(学生试算,教师巡视)

  教师:我发现同学们都只计算了两个底面的面积,还有一个侧面的面积呢?(设置难题,激起学生的探究欲望)

  教师:我们知道圆柱的侧面是一个曲面,能不能想办法把它转化成我们学过的图形呢?你猜想圆柱的侧面展开会是什么图形?(学生猜想:长方形、正方形、平行四边形······)

  教师:你能想办法验证一下你的猜想吗?

  (一)圆柱的侧面展开

  1、学生利用课前准备的学具分组活动,教师巡视并参与学生活动。2、汇报质疑:学生到讲台上汇报展示圆柱的侧面展开图,教师多媒体演示。①圆柱的侧面展开后是长方形,我竖直把圆柱的侧面剪开得到一个长方形。

  ②圆柱的侧面展开后是平行四边形,我斜着把圆柱的侧面剪开得到一个平行四边形。

  ③圆柱的.侧面展开后是长方形,因为我用一张长方形的纸卷成了一个圆柱。

  ④圆柱的侧面展开后是长方形,因为我把圆柱滚动一周发现圆柱侧面走过的是一个长方形。

  (动手操作,动脑思考,方法多样,为推理侧面积的计算公式打下基础。)(二)圆柱侧面展开图与圆柱的关系

  1、教师:同学们做的真是太好了,那你发现圆柱侧面展开图与圆柱有什么关系呢?请同学们观察、讨论一下。(学生观察、讨论,教师巡视并参与讨论)

  2、汇报质疑:学生到讲台上汇报展示,教师在黑板上画图演示。

  ①圆柱的底面周长

  ②圆柱的高

  (三)圆柱的侧面积计算公式的推导

  1、教师:你能根据长方形或平行四边形的面积计算方法得出圆柱的侧面积的计算方法吗?请同学们再观察、讨论。(学生观察、讨论,教师巡视并参与讨论)

  2、汇报质疑:学生汇报展示,教师板书演示。

  圆柱的底面周长

  长方形的面积=长×宽

  圆柱的侧面积=底面周长×高

  平行四边形的面积=底×高

  圆柱的底面周长

  圆柱的侧面积=底面周长×高

  教师:如果我们用S侧表示圆柱的侧面积,用C表示圆柱的底面周长,h表示圆柱的高,那么圆柱的侧面积计算公式应该是什么?(学生回答,教师板书)

  S侧=Ch

  汇报交流,质疑问难,计算表面积。

  1、多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)

  30

  教师:现在同学们能计算这个圆柱的侧面积了吗?(学生计算,教师巡视指导,请学生板演)

  S侧=Ch=2×3、14×10×30=1884(平方厘米)

  2、教师:那么现在你能计算这个圆柱的表面积吗?(学生计算,教师巡视)汇报交流,总结算法,并请学生板演。侧面积:2×3.14×10×30=1884(平方厘米)底面积:3.14×102=314(平方厘米)表面积:1884+314×2=2512(平方厘米)3、教师:你能总结圆柱的表面积计算方法吗?圆柱的表面积=侧面积+底面积×2巩固练习,应用新知。计算下列圆柱的表面积。

  教师:你能运用学到的知识计算下列圆柱的表面积吗?下面三个圆柱有什么不同?

圆柱的表面积教学设计6

  教学过程

  (一)复习导入,探求新知

  用课件展示复习内容:

  (1)我们学过的圆的周长是怎么计算的?面积呢?

  (2)长方形的面积呢?

  (3)圆柱有哪些特征?

  (二)设下悬念,导入课题

  由学过的长方体表面积的计算方法,设下悬念“要是这些面是曲面呢?表面积又要怎么求呢?”,激发学生的求知欲,带着问题进入本节课题。

  (三)动手操作,发现规律

  引导学生用一张纸做一个简单的圆柱模型,然后引导他们发现圆柱的特征,发现规律,例如:侧面的长=底面周长、侧面的宽=圆柱的高,还有本节课重点s圆柱=s侧面积+2×s底面积=c×h+2×πr2=2πr×h+2×πr2。

  (四)例题解剖,引导学习

  1、一顶厨师帽,高是30cm,帽顶直径20cm,做这样一顶帽子至少需要多少面料?

  解:(1)帽子的侧面积:s侧面积=2×3.14×20×30=3768(cm2)

  (2)帽顶的面积:s底面积=3.14×20×20=1256(cm2)

  (3)需要用面料:s侧面积+s底面积=3768+1256=5024(cm2)

  答:

  (五)巩固练习,知识拓展

  做一做:

  1、一个圆柱底面半径是2dm,高是5dm,求它的表面积?

  解:(1)s侧面积=2×3.14×2×5=62.8(dm2)

  (2)s底面积=3.14×2×2=12.56(dm2)

  (3)s圆柱=s侧面积+2×s底面积=62.8+2×12.56=87.92(dm2)

  2、一个圆柱表面积是6π,底面半径是2,则圆柱的`高是多少?

  解:设圆柱的高为h,由s圆柱=s侧面积+2×s底面积=2πr×h+2×πr×r知,6π=2π×1×h+2×π×1×1,解得h=2

  (六)反思小结,加强记忆

  让学生自主总结“本节课学习了什么?”

  1.这堂课的主要内容是什么?

  2.求圆柱表面积的公式是什么?

  3.如何运用公式求解实际问题。

  这堂课我们学习了圆柱的表面积计算的基本思路及方法。在估算圆柱表面积时发现了圆柱的表面积公式。在今天的学习中,我们还要逐步深入、领会、掌握“转化”这一数学思想方法。

  (七)设置问题,带出课堂

  16页第6题的第1小题,第7题和第14题。

  教学目标

  1、认识圆柱,掌握它的基本特征,认识圆柱的底面,侧面和高。

  2、通过制作圆柱模型,探索并掌握圆柱的侧面积和表面积的计算,并运用到实际问题中。

  3、通过探究、观察等活动,了解平面图形与立体图形之间的联系,发展学生的空间观察。

  教学的重、难点及教学关键

  (一)教学重点:探索圆柱侧面积和表面积的计算,并能运用到实际问题中。

  (二)教学难点:理解圆柱侧面展开图与圆柱的各部分之间的联系,并推导出圆柱侧面积和表面积的计算公式。

  (三)教学关键:利用教具,学具进行实验活动,引导学生观察、思考、经历计算公式的推导过程。

圆柱的表面积教学设计7

  【教学内容】

  P13-14页例3、例4,完成“做一做”及练习二的部分习题。

  【教学目标】

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  【教学重点】

  掌握圆柱侧面积和表面积的计算方法。

  【教学难点】

  运用所学的知识解决简单的实际问题。

  【教学准备】

  多媒体课件

  【自学内容】

  学习提示:

  (1)长方体、正方体的表面积指的是什么?

  (2)圆柱的表面积指的是什么?

  (3)圆柱的底面积你会计算吗?侧面积呢?

  (4)你知道侧面的形状以及长、宽与圆柱的关系吗?

  【教学预设】

  一、自学反馈

  1、求下面各圆柱的侧面积

  (1)底面周长2.5分米,高0.6分米

  (2)底面直径8厘米,高12厘米

  2、求下面各圆柱的表面积

  (1)底面积是40平方厘米,侧面积是25平方厘米

  (2)底面半径是2分米,高是5分米

  二、关键点拨

  1、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2、侧面积练习:练习七第5题

  (1)学生审题,回答下面的`。问题:

  ①这两道题分别已知什么,求什么?

  ②计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3、理解圆柱表面积的含义。

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4、教学例4

  (1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)

  ③表面积:1758.4+314=1758.4314≈1758(平方厘米)

  5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  三、巩固练习

  1、做第14页“做一做”。(求表面积包括哪些部分?)

  2、练习七第6题。

  四、分享收获畅谈感想

  这节课,你有什么收获?

  五、板书:

  圆柱的侧面积=底面周长×高

  圆柱的表面积=圆柱的侧面积+底面积×2

  例4:

  ①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)

  ③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想

圆柱的表面积教学设计8

  一、创设情境,悬念导入。

  上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?

  板书课题:圆柱的表面积

  二、合作探究,发现方法。

  1、圆柱的表面积包括哪些面的面积?

  2、研究圆柱的侧面积。

  (1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?

  (2)学生想办法亲自验证。

  (学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。)

  师问:①剪、拆的过程中你有什么发现?

  ②长方形的长当于什么,宽相当于什么?

  ③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?

  (3)推导圆柱体侧面积的计算公式:

  通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽

  所以:圆柱的侧面积=底面周长×高

  3、明确圆柱的表面积的计算方法。

  师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?

  板书:圆柱的表面积=圆柱的侧面积+两个底面的面积

  三、实际应用

  现在你能求出做这样一顶厨师帽需要多少面料吗?

  出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  1、引导:①求需要用多少面料,实际是求什么?

  ②这个帽子的表面积 的是什么?

  2、学生同桌讨论,列式计算,师巡视指导。

  3、汇报计算情况。

  板书:帽子的侧面积:3.14×20×28=1758.4(cm2)

  帽子的底面积:3.14×(20÷2)2=314(cm2)

  需要用面料: 1758.4+314=20xx.4≈20xx(cm2)

  答:需用20xxcm2的面料。

  四、巩固练习:课本第14页“做一做”。

  五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。

  六、作业:课内:练习二第5、7题;课外:练习二第6、8题。

  附:板书设计

  圆柱的表面积

  长方形的面积= 长 × 宽

  圆柱的.侧面积=底面周长 × 高

  圆柱的表面积=圆柱的侧面积+两个底面的面积

  例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  帽子的侧面积:3.14×20×28=1758.4cm2)

  帽子的底面积:3.14×(20÷2)2=314(cm2)

  需要用面料: 1758.4+314=20xx.4

  ≈20xx(cm2)答:需用20xxcm2的面料。

圆柱的表面积教学设计9

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是、和。

  2、底面是形,它的面积=。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个形。它的长等于圆柱的,宽等于圆柱的。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=,所以圆柱的侧面积=。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。

  ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的和这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由和组成。

  (2)圆柱的表面积的计算方法:

  圆柱的表面积=

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。

  列式计算:

  ①帽子的.侧面积=

  ②帽顶的面积=

  ③这顶帽子需要用面料=

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

  布置学生课下复习本节课内容。

圆柱的表面积教学设计10

  教材内容和在本册教材中的地位:

  《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。

  学情分析:

  学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

  教学重难点:

  重点

  圆柱表面积的计算。

  难点

  圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。

  教学过程

  一、激趣导入

  (复习圆柱体的特征)

  师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的。立体图形。

  师:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?

  引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

  二、目标定向

  1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、我能通过对已有知识的迁移,探索新知识。

  三、自主合作

  (一)圆柱表面积的意义。

  设疑:1、长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

  2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。

  (二)根据条件,计算圆柱的底面积。

  圆柱的底面是圆形,同学们会求它的面积吗?

  (三)圆柱体侧面积的计算

  1、引导探究圆柱体侧面积的计算方法。

  设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

  想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

  2、计算圆柱体的侧面积。

  (四)求圆柱的表面积。

  1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的`表面积?

  2、学生根据数据进行计算?

  四、交流展示

  (一)汇报圆柱表面积的意义。

  底面积×2+侧面积=表面积

  (二)圆柱体侧面积的计算

  1、小组合作探究。(剪圆柱形纸筒)

  2、汇报交流研究结果,各小组展示。

  3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

  (三)以小组为单位自己做例4,做完组长检查。

  五、拓展延伸

  1、求出下面各圆柱的侧面积.

  (1)底面周长是1.6米,高是0.7米

  (2)底面半径是3.2分米,高是5分米

  2、计算下面各圆柱的表面积.(单位:厘米)

  (1)底面直径是12米,高是16米

  (2)底面半径是3.2分米,高是5分米

  3、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?

  2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?

  板书设计

  圆柱的表面积

  底面积=圆面积

  底面积×2+侧面积=表面积

  课后反思:

  我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。

  1、实践操作

  在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。

  2、精讲多练。

  新知的获得时间要短,课后的练习要从易到难。

  本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。

  数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。

  当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。

圆柱的表面积教学设计11

  教学内容:

  九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题

  教学目标:

  1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。

  教具准备:

  圆柱形的物体,圆柱侧面的展开图

  教学重点:

  理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  教学难点:

  根据实际情况来计算圆柱的表面积。

  教学过程:

  一、复习

  下面()图形旋转会形成圆柱。

  二、认识侧面积的意义和计算方法。

  1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

  问:你能想办法算出这张商标纸的面积吗?

  ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

  ⑵交流:你们是怎么算的?

  沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

  ⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

  观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?

  使学生认识到:长方形的`长就是圆柱的底面周长,宽就是圆柱的高。

  2、出示例1中的罐头。

  ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?

  ⑵出示数据:底面直径11厘米高:15厘米

  ⑶学生算出商标纸的面积。

  ⑷交流:你是怎么算的?先算什么?再算什么?

  3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

  追问:怎么算圆柱的侧面积?

  圆柱的侧面积=底面周长×高

  长方形的面积=长×宽.

  4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?

  5.独立完成“练一练”第1题

  三、认识表面积的意义和计算方法。

  1、出示例3中的圆柱。

  ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

  ⑵让学生算一算后交流。师板书:

  长:3.14×2=6.28(厘米)宽:2厘米

  ⑶圆柱的两个底面的直径和半径分别是多少厘米?

  板书:直径2厘米半径1厘米

  2、引导画出圆柱的展开图。

  ⑴这个圆柱有几个面?分别是什么?

  ⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

  ⑶在书上方格纸上画出这个圆柱的展开图。

  ⑷交流:你是怎么画的?

  3、认识圆柱的表面积。

  ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

  板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

  ⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。

  4、练习:完成“练一练”第2题。

  ⑴各自练习,并指名板演。

  ⑵对照板演,讨论:

  这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?

  想一想:如果知道的是圆的周长呢?

  四.总结反思

  1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?

  2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?

  畅谈体会。

  五、巩固应用

  1.完成练习六第1题。

  注意指导学生思考问题要求的是圆柱的哪个面。

  2.完成练习六第2题。

  先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?

  教学反思:

  本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。

  1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

圆柱的表面积教学设计12

  教学内容:教科书第21-22页,练一练1、2题、练习六1-2题。

  教学目标:

  1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。

  2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。

  3、能正确运用公式计算圆柱的侧面积和表面积。

  教学重点:

  1、理解圆柱侧面积和表面积的意义。

  2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。

  教学难点:能正确计算圆柱的侧面积和表面积。

  教学具准备:圆柱形状的罐头,外面有可以展开的商标纸。

  预习作业:

  1、预习课本第21-22页的例2、例3。

  2、掌握圆柱侧面积和体积的计算方法。

  3、在作业本上完成第22页练一练第1题、第2题。

  教学过程:

  一、预习效果检测

  1、圆柱的侧面积=

  2、什么叫做圆柱的表面积?

  3、圆柱的表面积=

  4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。

  二、合作探究

  (一)、教学例1

  1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

  问:你能想办法算出这张商标纸的面积吗?

  ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

  ⑵交流:你们是怎么算的?

  沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

  ⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

  观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?

  使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

  2、出示例1中的罐头。

  ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便?

  ⑵出示数据:底面直径11厘米高:15厘米

  ⑶学生算出商标纸的面积。

  ⑷交流:你是怎么算的?先算什么?再算什么?

  如果知道的是底面半径,怎么算呢?

  3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

  追问:怎么算圆柱的侧面积?

  根据学生回答板书:圆柱侧面积=底面周长×高

  4、练习:完成“练一练”第1题。

  (二)、教学例3

  1、出示例3中的.圆柱。

  ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

  ⑵让学生算一算后交流。师板书:

  长:3.14×2=6.28(厘米)宽:2厘米

  ⑶圆柱的两个底面的直径和半径分别是多少厘米?

  板书:直径2厘米半径1厘米

  2、引导画出圆柱的展开图。

  ⑴这个圆柱有几个面?分别是什么?

  ⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

  ⑶在书上方格纸上画出这个圆柱的展开图。

  ⑷交流:你是怎么画的?

  3、认识圆柱的表面积。

  ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

  板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

  ⑵算出这个圆柱的表面积。

  算后交流,提醒学生分步计算。

  4、练习:完成“练一练”第2题。

  (三)、全课总结

  这节课我们学习了什么?(板书:圆柱的表面积)

  三、当堂达标检测

  1、完成练习六第1题。

  2、完成练习六第2题。

圆柱的表面积教学设计13

  教学目标

  1、认识圆柱的表面积,理解圆柱表面积的含义.

  2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.

  3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.

  重点:认识圆柱的表面积,理解圆柱表面积的含义.

  难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:

  1、圆柱体教具一个

  2、学生每人准备圆柱形模型两个;

  剪刀;

  教学过程:

  一、复习引入

  1、看老师今天带来了个什么?它是个什么样的立体图形?为什么你认为它是圆柱呢,他与圆柱又什么共同的特征呢?(有两个相同的圆,有一个侧面。)

  2、哪现在老师想请一个同学来摸一摸你能摸到几个面?

  3、其实刚才同学们所摸到的面,它的面积就是我们圆柱的表面积也就是我们今天要学习的内容(板书:圆柱的表面积)

  二、新课教学

  一、侧面积的推导:

  首先请同学们读一读这节课的学习目标

  (一)出示学习目标:

  1、理解圆柱的侧面积和表面积的含义。

  2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

  3、能灵活运用求表面积,侧面积的有关知识解决一些生活中的实际问题。

  师:要求表面积,从我们观察的羽毛球桶来说求的是桶的表面积指的是什么呢?(一个侧面和两个底面面积之和)板书:圆柱的表面积=侧面面积+2个底面面积

  师:哪两个底面面积是两个什么的面积啊?(两个圆的面积)

  哪可是圆柱的侧面是一个什么面?(曲面)我们学过平面图形的面积哪曲面图形的面积怎么计算呢?我们可以把它转化为平面图形来计算吗?

  师:把圆柱的侧面展开会是一个什么样的图形呢?这个问题由同学们待会再小组讨论中得出结论.现在每组都有一个圆柱那你们把它剪开,把侧面剪开后你有什么发现,并带着这两个问题进行讨论。小组讨论:

  1.圆柱的侧面展开是什么形状

  2.展开图中的长与圆柱的底面的周长又什么关系,宽与圆柱的高有什么关系呢?

  为了清楚看到他们展开后是什么形状,我们一起来看大屏幕的演示。侧面展开后是个什么形?那么它展开后与圆柱的'各部分又什么关系呢?大家接着看。(长刚好是圆柱底面周长 宽刚好是圆柱的高)那么圆柱的侧面积你知道应该怎么计算了吗?(板书:长方形的面积= 长 × 宽

  ↓ ↓ ↓ 圆柱的侧面积=底面的周长×高)

  这个方法是同学们通过自己的努力,将一个曲面转化成平面图形而推导出来的,请同学们用洪亮的声音表扬自己读一读。

  (二)圆柱的侧面积应用

  师:那么老师想要将这个羽毛球桶贴上一圈商标纸呢应该是求这个圆柱的什么呢?(侧面积)那么侧面积怎么算呢?大家做到本子上 请同学展示

  我们知道了什么求什么?底面周长是多少呢?

  二、圆柱的表面积推导:

  (一)圆柱表面积

  师:那么刚才我们求的商标纸的面积是圆柱的表面积吗?(不是)哪要求圆柱的表面积还要怎么办?(加上两个底面的面积)也就是说我们要求圆柱的表面积就是要求圆柱那几部分的面积?

  (一)圆柱表面积应用

  师:如果老师要将这个羽毛球桶全部贴上包装呢,你认为求的是它的什么呢?(表面积)自己做下。展示(做对的举手)

  哪么是不是生活中的所有的圆柱都是要求三个面的面积吗?我们来看下这道题。请同学们读一读题,读出关键词,问的是要求做这样一顶帽子要多少材料多少材料其实是求什么呢?有几个面的面积要算呢?该怎么算呢大家做一做?(出示答案)完了吗?(没有)那我们要用什么法呢?(进一法)

  通过刚才的学习我们知道是不是所有的圆柱的表面积都是要求三个面吗?(不是)对要根据实际情况分清楚,要求的是哪几个面比如?(出示图片请同学们回答)

  三、练习

  四、小结

  同学们这节课你有什么收获呢

  五、课后作业

  六年级数学下册《圆柱的表面积》

  教学设计

  竹寨小学 聂磊

圆柱的表面积教学设计14

  教学目标:

  1、理解圆柱侧面积和圆柱表面积的含义。

  2、掌握圆柱侧面积和表面积的计算方法。

  3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学准备:

  多媒体课件

  教学过程:

  一、创设情景

  1、复习圆柱的特征。

  2、大屏幕出示问题,学生口头回答:

  (1)一个圆形花池,直径是5米,周长是多少?面积是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽

  二、探究新知

  1、教学圆柱的侧面积。

  (1)大屏幕出示课题:圆柱的表面积。

  (2)理解“圆柱的侧面积”的含义。用手指出实物圆住的侧面积。

  (3)大屏幕出示圆柱的侧面展开图,思考:圆柱的侧面积应该怎样计算呢?引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的`关系,推出:圆柱的侧面积=底面周长×高

  2、小结。

  要计算圆柱的侧面积,必须知道什么条件?如果题目只给出直径或半径,又如何求圆住的侧面积呢?

  3、理解圆柱表面积的含义。

  观察自己制作的圆柱模型:圆柱的表面由哪几个部分组成?那么,圆柱的表面积是指什么?大屏幕:圆柱的表面积=圆柱侧面积+两个底面的面积

  4、教学例4。

  (1)大屏幕出示例4的题目。

  思考:这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么? (2)学生试着解答。

  (3)全班交流:为什么只求了一个底面面积呢? (4)小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  5、巩固练习:完成第14页的“做一做”。

  三、课堂小结

  圆柱的表面积指的是哪几个面?如何求圆柱的表面积?

  四、作业

  完成练习二的5——7题。

  五、思维训练

  1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的( )。

  2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求( )与( )的( )。

圆柱的表面积教学设计15

  教学内容:

  义务教育课程标准试验教科书青岛版六年级下册小学数学教科书第19—20页。

  教材简析:

  圆柱表面积包括圆柱体的侧面积、表面积的概念,表面积的计算方法。由于学生已了解长方体、正方体的表面积,又制作过圆柱模型,所以对圆柱表面积理解并不困难。因此教材一开始就提出问题:圆柱的表面积指的是什么?让学生在交流中逐步理解圆柱表面积的含义。对于表面积的计算,由于空间想象力有限,学生往往不能将圆柱的底面半径(直径)及圆柱的高,和圆柱侧面的长、宽建立起联系。因此,教材加强了操作,让学生将课前做好的圆柱模型展开,观察展开后的形状,并在展开后的图形中标明圆柱的底面和侧面,以便于把展开后的每个面与展开前的位置对应起来,得出:圆柱的表面积=圆柱的侧面积+两个底面的面积。接着引导学生再借助表面展开图,推出:圆柱的侧面积=底面周长×高。

  教学目标:

  1、结合具体情境,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱的侧面积和表面积的计算方法,并能解决简单的实际问题。

  2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思维,培养初步的分析、综合、比较、抽象、概括和简单的判断、推理能力。

  3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

  4、使学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

  教学重、难点:

  重点:理解求表面积、侧面积的计算方法,能进行正确计算。

  难点:理解侧面积的计算方法,能灵活运用表面积、侧面积的计算方法解决简单的实际问题。

  教具准备:

  剪刀、直尺、一些容易剪开的圆柱形纸筒。

  教学过程:

  一、铺垫孕伏

  1.口答下列各题(只列式不计算)。课件出示

  (1)圆的半径是5厘米,周长是多少?面积是多少?

  (2)圆的直径是3分米,周长是多少?面积是多少?

  复习圆的周长和面积公式。

  2.教师出示圆柱体模型,让学生边指边说圆柱的特征。

  二、探究新知

  1.教师出示一个圆柱形茶叶桶:三八妇女节快要到了,老师想送给妈妈已和茶叶,需要包装一下,至少要用多少包装纸?(接口处忽略不计)

  课件出示思考问题:

  (1)怎样的包装盒最节省材料?(紧贴物体,包成圆柱形的形状)

  教师实际操作,将提前准备好的包装纸直接包装。

  (2)要求用多少包装纸也就是求什么?(也就是求圆柱形的表面积)

  这就是我们今天要来研究的内容。板书课题:圆柱的表面积

  2.圆柱形的表面积怎样求呢?放手让学生动手剪一剪,小组交流。

  (圆柱的侧面积加上两个底面积就是圆柱的表面积。)

  教师板书公式:圆柱表面积=底面积×2+侧面积

  侧面积呢?(沿高剪开,把他变成一个长方形或正方形来进行计算)

  剪开之后形成的这个长方形长和宽又和圆柱形有什么关系呢?

  学生来演示验证的过程,并阐述发现的结果(长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高)。

  根据刚才同学们的发现,圆柱的侧面积该怎样求?

  学生说,教师板书公式:圆柱侧面积=底面周长×高

  3.总结字母公式。

  4.经过测量之后,老师手里的这个圆柱形物体的底面直径是10厘米,高是20厘米,你们能运用刚才我们的`发现来解决一下:包装纸最少要用多少这个问题吗?

  学生独立解答,找学生板演,集体订正。

  三、巩固运用。

  1 .自主练习1

  先让学生说说要求圆柱的侧面积和表面积需要知道什么条件,板书直径、半径、高。然后让学生独立解答。交流完解答过程之后,让学生说说在解答这个题目的时候什么地方最容易出现错误。(底面积和底面周长容易发生混淆)

  2.自主练习2(改编)

  做一个高6分米,底面半径2分米的无盖圆形铁皮水桶,大约要用铁皮多少平方分米?(得数保留整十平方分米)

  教师直接出示题目,学生默读题,然后教师提示学生思考:在做题之前,你有什么提醒同学注意的地方吗?

  (1)保留要用进一法;

  (2)只求一个底面积和侧面积。

  3.自主练习3

  先让学生明确:求压过路面的面积也就是求圆柱形前轮的侧面积。然后让学生独立解答。(根据时间,可以要求学生只列式不计算)

  4.提高练习:自主练习7(机动)

  思考:

  (1)没有告诉你直径或半径,怎么办?

  (2)要求需要多少材料也就是求什么?

  四、拓展运用

  自主练习第5题。

  先让学生独立想象、选择,然后前后位互相交流一下自己的想法。

  五、总结

  通过本节课的学习,你都学到了哪些数学知识和数学方法?

  教学反思:

  这节课的教学,基本上完成了教学目标,并较好的解决了教学中的重点、难点,我主要针对以下三个方面设计了教学:

  1、重视学习内容的生活性数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。让学生自己提出问题,激发了学生创造的愿望。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2、重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3、重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。让学生在动手操作中发现圆柱侧面展开的三种情形,在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

  但在课堂教学中,仍然还存在一定的问题,如课堂教学的时效性仍需提高,对于重、难点的解决仍不够突出,可通过让学生动手操作等方法加深学生的认识。

  在以后的教学中,作为数学教师,不仅要对本信息窗的教学内容有深刻地了解,更要对整个小学六年的知识有一个更系统化、层次化的认识,以便为以后的教学奠定扎实的基础。

【圆柱的表面积教学设计】相关文章:

《圆柱的表面积》教学反思03-29

圆柱的表面积教学反思05-11

《圆柱的表面积》教学反思03-10

“圆柱的表面积”教学反思04-05

《圆柱的表面积》数学教学反思04-22

圆柱的表面积教案11-17

圆柱的表面积说课稿09-11

《圆柱的表面积》教学反思15篇06-12

《圆柱的表面积》教学反思(15篇)03-14