当前位置:9136范文网>教育范文>教学设计>六年级数学比的基本性质教学设计

六年级数学比的基本性质教学设计

时间:2024-04-17 18:43:52 教学设计 我要投稿
  • 相关推荐

六年级数学比的基本性质教学设计

  作为一位杰出的老师,往往需要进行教学设计编写工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。教学设计要怎么写呢?下面是小编精心整理的六年级数学比的基本性质教学设计,欢迎大家分享。

六年级数学比的基本性质教学设计

六年级数学比的基本性质教学设计1

  教学内容:教科书第11册,第48页比的基本性质,例1和“练一练”及练习十二6~10题。

  教学目标:1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

  2、培养学生类比、推理和概括思维能力。

  教学重点:1、理解比的基本性质。

  2、运用比的基本性质进行化简比。

  一、探究新知

  (一)比的基本性质

  1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)

  (1)4人小组交流(2)全班交流

  (3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

  (4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

  2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?

  3、老师板书结语:比的'前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上“0除外”,为什么?

  4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

  5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

  (二)化简比---完成练习题(后附)

  1、小组交流

  2、全班交流

  小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

  结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

  二、巩固练习

  1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

  2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

  3、拓展练习

  3:8=(3+6):(8+)

  (让学生分小组讨论方法)

  三、课堂总结

  这节课有哪些收获?师生共同总结。

  ()年()班姓名

  “比的基本性质”小研究

  你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

  方法一

  方法二

  方法三

  方法四

  我的发现:

  聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

  序号

  比

  我的方法

  (写出过程)

  1

  14:21

  2

  36:15

  3

  1/6:2/9

  4

  2/3:3/4

  5

  1.25:2

  6

  5.6:4.2

六年级数学比的基本性质教学设计2

  教学目标:

  知识与技能:

  1、理解比的基本性质。

  2、正确应用比的基本性质化简比。

  过程与方法:

  1、利用知识的迁移,使学生领悟并理解比的基本性质。

  2、通过学生的自主探讨,掌握化简比的方法并会化简比。

  情感态度与价值观:

  初步渗透事物是普遍联系的辩证唯物主义观点。

  教学重点:

  理解比的基本性质,推倒化简比的方法,正确化简比。

  教学难点:

  正确化简比。

  教具准备:

  写有例题和练习题的小黑板。

  教学过程:

  一、导入

  1、比与分数、除法的关系。

  老师:我们已经学习了比的意义,知道比和分数、除法之间有着密切的关系,哪位同学愿意说说比和分数、除法之间有什么联系?

  2、复习分数的基本性质和商不变的性质。

  老师:请大家回忆一下,分数有什么性质?除法又有什么性质?它们的内容分别是什么?

  二、教学探究

  1、猜想。

  老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的?

  汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。

  引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以同一个数(0除外),分数的'大小不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以同一个数(0除外),商不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。

  2、验证。

  以小组为单位,讨论、验证一下刚才的猜想是否正确。

  学生汇报。

  3、小结。

  经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。

  板书课题:比的基本性质。

  4、化简比。

  老师:应用比的基本性质,我们可以把比化成最简单的整数比。

  出示例1的第(1)题。

  (1)“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,(前面展示过),另一面长180cm,宽120cm。这两面联合国旗长和宽的最简单的整数比分别是多少?

  让学生在练习本上写出一小一大两面联合国旗长和宽的比,15:10和180:120

  提问:你怎样理解最简单的整数比这个概念?

  学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。

  让学生自己尝试把这两个比化成最简单的整数比,然后集体订正答案。

  15:10=(15÷5):(10÷5)=3:2

  180:120=(180÷60):(120÷60)=3:2

  提醒学生注意两个比化简的结果,并让学生说说结果相同,说明了什么?(说明两面国旗大小不同,形状相同。)

  出示例1的第(2)题。

  (2)把下面各比化成最简单的整数比。

  1/6:2/90.75:2

  让学生独立试做,教师巡视指导,请两名学生在黑板上板演。

  师生共同讲评。

  1/6:2/9=(1/6×18):(2/9×18)=3:4

  提问:为什么要乘18?可能会有学生想到不同方法,教师应给予肯定。

  0.75:2=(0.75×100):(2×100)=75:200=3:8

  或(0.75×4):(2×4)=3:8

  老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。

  三、堂堂清测试

  1、完成教材第46页的“做一做”,集体订正。在校对、交流的基础上,引导学生对化简比的方法进行小结。

  2、完成教材第48页练习十一的第4

六年级数学比的基本性质教学设计3

  设计说明

  本课时是在学生学习了比的意义以及比与分数、除法的关系等相关知识的基础上进行教学的,鉴于教材的教学内容比较集中,本课时在教学设计上有如下几个特点:

  1.复习、铺垫,理清关系。

  上课伊始,通过做复习题,使学生加深对比的意义、商不变的性质以及分数的基本性质的理解,理清比与分数、除法的关系,为学习新知做好铺垫。

  2.转化、类推,理解性质。

  教学比的基本性质时,从已有的知识入手,通过恰当的提问,引导学生建立新旧知识之间的联系,领悟用旧知学习新知的方法,发现比的基本性质与商不变的性质以及分数的基本性质之间可以互相转化的本质,理解和掌握比的基本性质。

  3.体验、总结,发现方法。

  教学应用比的基本性质化简比时,引导学生动手体验,总结出化简比的方法,引导学生发现化简比与求比值的区别,概括出化简比的方法和步骤,使学生对新知的运用能力得以提高。

  课前准备

  PPT课件 学情检测卡

  教学过程

  ⊙复习铺垫

  1.什么叫两个数的比?(两个数的比表示两个数相除)

  2.比与分数、除法有什么关系?(引导学生明确比与分数、除法的关系,可以结合算式或表格回答)

  3.商不变的性质和分数的基本性质各是什么?[商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变]

  设计意图:回顾比的意义和商不变的性质以及分数的基本性质,理清比与分数、除法的关系,为探究比的基本性质做好铺垫。

  ⊙探究新知

  1.导入新课。

  (1)课件出示:,,。

  (2)这三个分数的大小相等吗?为什么?(相等,因为它们的分数值都是0.75)

  (3)还有其他方法可以证明它们的.大小相等吗?怎样证明?(有,根据分数的基本性质,和都可以化成,所以它们的大小相等;根据分数和除法的关系以及商不变的性质也可以证明这三个分数的大小相等)

  (4)在除法中有商不变的性质,在分数中有分数的基本性质,那么在比中是否也有类似的性质呢?这节课我们就来探究一下比的基本性质。(板书课题)

  2.探究比的基本性质。

  (1)把,,改写成比的形式。(引导学生汇报并用课件展示:=3∶4;=6∶8;=12∶16)

  (2)探讨这三个比之间的关系,用算式表示出来,并说明理由。(3∶4=6∶8=12∶16,比值都是0.75)

  出示课堂活动卡。

  (3)观察、比较、发现。(结合学生的汇报,用课件展示相关内容)

  6÷8=(6×2)÷(8×2)=12÷16

  ↓↓↓

  6∶8=(6×2)∶(8×2)=12∶16

  规律:比的前项和后项同时乘相同的数,比值不变。

  6∶8=(6÷2)∶(8÷2)=3∶4

  ↓↓↓

  6÷8=(6÷2)÷(8÷2)=3÷4

  规律:比的前项和后项同时除以相同的数,比值不变。

六年级数学比的基本性质教学设计4

  教学内容:课本第50页例2;练一练;《作业本》第22页。

  教学目标:

  1、理解并掌握比的基本性质,知道最简单的整数比,会根据比的基本性质将比化成最简单的整数比。

  2、培养学生自主迁移、自主构建知识的能力。

  教学重点:比的基本性质和化简比

  教学过程:

  一、准备练习:

  1、求下列各比的比值。

  12:201:1:1.5:2.5

  2、在()里填上适当的数。

  ⑴=()()=():()

  ⑵====

  (第1题:分数与除法的关系;第2题:分数的基本性质)

  3、复习比与除法、分数的关系。(完成上堂课的表格)

  二、教学新课:

  1、引入。

  分数基本性质是怎样的?除法的商不变性质又怎么说?根据分数、除法和比的关系,你能猜出比的基本性质应该是怎样的.呢?

  (1)学生试着叙述。

  (2)反馈小结。

  分数基本性质、除法的商不变性质中的都有0除外,为什么?比的基本性质要不要也加上这个条件?应该怎么说才最完整呢?

  2、看书验证自己的猜想。P50页。

  3、什么是最简单的整数比?

  (1)下面哪些是整数比?哪些整数比最简单?为什么?

  6:1012:210.3:0.40.25:1

  3:54:73:4:

  (2)教师小结:

  像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为最简整数比,化成最简整数比简称化简比。

  4、教学例2。化简比。

  (1)应用比的基本性质可以把比化成整数比。

  自学课本P50、51例2、例3)

  (2)小结:

  ①整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。

  ②分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。

  (3)试一试。

  三、巩固练习:练一练

  四、小结:

  今天你学会了什么?比和比值的区别怎样?(比值是一个数,可以用分数、小数、整数来表示;而比必须清楚的看出比的前项和后项,只能用比的形式表示。)

  五、《作业本》第22页。

六年级数学比的基本性质教学设计5

  教学内容:教科书第70~71页的例3、例4以及相应的“练一练”,练习十三的第6~9题

  教学目标:

  (一)使学生理解和掌握比的基本性质,能应用比的基本性质进行化简比;

  (二)使学生在经历和探索比的基本性质的过程中,进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括及合情推理的能力。

  教学过程:

  (一)复习旧知识,做好新课铺垫

  1、提问:①什么叫做比?

  ②除法、分数、比之间有什么联系吗?

  根据学生的回答板书。

  被除数÷除数==前项:后项

  2、观察下面的每组题目,你有什么发现吗?

  第一组:12÷4=3

  (12×3)÷(4×3)=3 商不变

  (12÷2)÷(4÷2)=3

  第二组:=3

  ==3 分数值不变

  ==3

  先让学生分组讨论,再组织全班交流。

  根据交流情况适时板书

  被除数÷除数==前项:后项

  商不变性质 分数基本性质

  [评析:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,在新课之前,让学生回忆旧知,使学生在回忆旧知识的过程中,自然地过渡到了新课,使学生很清楚地知道知识的内在联系。]

  (二)新课,概括比的基本性质。

  1、再观察一组题目

  例3:下面是小冬在实验里测量几瓶液体的质量和体积的记录表。

  填写下表,并把比值相等的比填入等式。

  质量/g 体积/cm3 质量和体积的比值

  第一瓶 4 5

  第二瓶 16 20

  第三瓶 50 50

  第四瓶 40 50

  ( ):( )=( ):( )=( ):( ) }比值不变

  1、学生独立填写后。

  2、提问:观察上面的等式,联系商不变性质和分数的基本性质,想一想,比会有什么性质?

  学生观察思考,再把自己的想法在小组里交流。教师巡视,了解学生的讨论情况,对有困难的学生给予指导。

  引导发现:比的前项和后项同时乘或除以相同的数(0除外),比值不变。这是比的基本性质(板书)

  问:为什么比的后项不能为0?指出:比的后项相当于除数或分母。除数和分母不能为0,所以比的后项也不能为0。

  3、上面三个相等的比哪个更简单一些?

  学生比较后发现应用比的基本性质,可以把一些比化成最简单的整数比。

  (三)利用比的基本性质化简比

  例4:把下面各比化成最简单的整数比。

  (1)12:18 (2) (3)1.8:0.09

  讨论:你是怎样理解“化成最简单的整数比”的?你能根据“比的基本性质”进行化简吗?

  根据学生的回答,整理后板书。 板书后追问:

  12:18=(12÷6):(18÷6) 为什么要同时除以6?

  =2:3

  =(×12):(×12) 为什么要同时乘以12?

  =10:9

  1.8:0.09=(1.8×100):(0.09×100) 为什么要同时乘100?

  =180:9

  =20:1

  小结:化成最简单的整数比,就是根据比的基本的性质,直到比的前项和后项互质为止。

  [评析:当问题出现时,老师并没有急于去讲解,而是放手让学生自己去讨论、去交流,因为学生有了对商不变的性质和分数基本性质的理解,所以学生很快就理解了比的基本性质,并能化简比。]

  四、沟通联系,深化认识

  1、指导完成“练一练”

  做第1题。学生独立填完后,要求说说是怎样想的?

  做第2题。学生黑板上板演,集体订正时说出做每道题的理由。

  2、指导完成练习十三第6~9题

  做第6题。先让学生独立完成,再要求说说整数比,分数比和小数比化简的方法。

  做第7题。先让学生独立完成,再通过小组交流,发现每种规格国旗长和宽的比是一定的,都是3:2,并对学生进行爱护国旗的教育。

  做第8题。先让学生独立完成,学生完成后,指名说说思考的过程。

  做第9题。分组完成,组织交流,让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。如4:16化简后是1:4,写成分数形式是,这个结果也可以看成比值;75:25的比值是3,写成分数形式是,这个结果也可以看成一个比。

  五、课堂总结:

  今天这节课,学习了什么内容?通过学习,有什么收获?你今天在课堂上的表现怎么样?

  教学评析:

  1、“最好的学习动机是学生对所学内容产生浓厚的兴趣”在新课开始,为了让学生更好地理解比的基本性质,在复习时,让学生回忆起商不变的性质和分数的基本性质,在学生的回忆中,很自然地过渡到比的基本性质,由于学生已经知道了商不变的性质和分数的'基本性质;又理解了除法、分数、比之间的联系,所以很快理解了比的基本性质。这样激发学生的求知欲和主动参与学习的动机,使学生学习情绪高涨,达到学习的最佳境界。

  2、注重学生的合作学习,例如:在发现比的基本性质时,让学生先观察思考,再把自己的想法在小组里交流。再比如:让学生讨论是怎样理解“化成最简单的整数比的”?你能根据“比的基本性质”进行化简吗?学生在小组合作学习时,老师创设了一个积极探讨,合作研究的空间,让学生在小组里自由地各抒己见,展开议论,互帮互学,强化理解。通过反馈汇报,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。

  3、这节课,通过学生“回忆知识”“小组合作发现比的基本性质”……使学生兴趣浓厚,学得积极主动,这样的设计发挥学生的自主性和积极性,为学生创设了一个愉悦轻松的学习氛围,提高了课堂教学的效率。

六年级数学比的基本性质教学设计6

  素质教育目标

  (一)知识教学点

  1.使学生理解掌握比例的意义和基本性质。

  2.认识比例的各部分的名称。

  (二)能力训练点

  1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

  2.培养学生的观察能力、判断能力。

  (三)德育渗透点

  对学生进一步渗透辩证唯物主义观点的启蒙教育。

  教学重点:

  比例的意义和基本性质。

  教学难点:

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

  教具学具准备:

  小黑板、投影片、投影仪。

  教学步骤

  一、铺垫孕伏

  教师出示复习题,回忆有关比的知识。

  1.什么叫做比?

  2.什么叫做比值?

  3.求下面各比的比值:

  4.上面哪些比的比值相等?

  学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)

  二、探究新知

  1.比例的意义。

  出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是______;

  第二次所行驶的路程和时间的比是______。

  这两个比的比值各是多少?它们有什么关系?

  (1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式

  (2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)

  师问:什么叫做比例:组成比例的关键是什么?

  生答:表示两个比相等的式子叫做比例。(板书)

  引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)

  (3)做一做

  下面哪组中的两个比可以组成比例?把组成的比例写出来。

  ①6∶10和9∶15

  ②20∶5和1∶4

  第①题由教师引导学生完成,思路如下:

  所以:6∶10=9∶15

  其余各题分组讨论后由学生独立完成。

  (4)填空

  ①如果两个比的比值相等,那么这两个比就()比例。

  ②一个比例,等号左边的`比和等号右边的比一定是()的。

  2.比例的基本性质。

  (1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)

  (2)让学生看下面这些比例,说出它的外项和内项是多少?

  4.5∶2.7=10∶6

  6∶10=9∶15

  (3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明。(师边板书如下)

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  (4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。

  (5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)

  (板书课题:加上“和基本性质”,使课题完整。)

  (6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?

  指名回答后,师板书:

  (7)做一做

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

  6∶3和8∶50.2∶2.5和4∶50

  3.阅读课本第9、10页的内容并填空。

  三、巩固发展

  1.说一说比和比例有什么区别。

  讨论后指名说明:

  比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。

  2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

  3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  (1)6∶9和9∶12

  (2)1.4∶2和7∶10

  4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)

  2、3、4和6

  四、全课小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。

  五、布置作业练习一第3题。

六年级数学比的基本性质教学设计7

  知识点:

  理解比例的意义和基本性质。

  能够根据比的意义或者比的基本性质来判定两个比是否能组成比例。

  重点:

  比例的意义和基本性质。

  难点:

  应用比例的意义和基本性质判断两个数能否成比例。并能正确地组成比例。

  教学准备:

  课件

  教学过程:

  一.导入

  (课件中有《比的意义和基本性质》这一课题)看到这一题目时,有的同学可能会想比例是什么?比例和比有关系吗?如果有关系,会是什么关系呢?有什么区别吗?等等。这节课,我们就展开研究!

  二.探究新知

  1.教学比例的意义

  (1)课件出示“天安门广场升旗”图,同学们请看,这是在干什么?对,这是天安门广场庄严肃穆的升旗仪式,你知道这面国旗的长和宽各是多少吗?

  (2)出示数据:看到这两个数据.你能提出什么数学问题?(周长,面积,长宽的比)根据学生的回答板书:5:10/3(板书:比)

  (3)你还记得哪些关于“比”的知识。(求出比值)

  (4)同学请看,这是其它不同场合用到的国旗,请分别算出它们长和宽的比值。(汇报.师板书)

  (5)你有什么发现吗:(比值相同)这些国旗的大小相同吗?但比值相等,两个比也就相等,我可以用等式来表示:板书:5:10/3=2.4:1.6像这样两个比相等的式子,你还能写出几个吗?(汇报:板书)

  (6)像这样的式子就叫做比例:(板书:比例)哪位同学能说说什么叫做比例。(板书:表示两个比相等的.式子叫做比例)这就是比例的意义,(板书:意义)

  (7)说起比例,它必须是各两个条件,一个是……另一个是……

  2.教学比例的判定

  (1)课件出示:下面就请同学们根据比例的意义来判断一下下面这四组,哪两个比可以组成比例?把组成的比例写出来。

  (2)汇报:为什么20:5和1:4不能组成比例:要判断两个比能不能组成比例,关键看什么?

  (3)师小结:通过上面的学习,我们知道比例是由两个相等的比组成的……

  板书:1:2=():()

  师小结:像这样的比例能写完吗?只要比值是1/2就可以了。

  (4)“比”和“比例”的区别

  现在请同学们想一想,比例和比有什么区别。

  3.教学比例的基本性质

  (1)刚才,我们知道了,比例有4个项,我们把外边的两个叫做外项,把里面的两个叫做内项。

  (2)谁来说一说(1:2=6:12)这个比例的外项和内项。

  (3)现在把内项和外项分别相乘,看看会有什么发现?(汇报,板书:外项的积=内项的积)

  (4)检验

  (5)师总结:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(板书:基本性质。

  (7)根据比例的基本性质,判断是否成比例。

  (8)师:判断两个比是否成比例,我们既可以用比例的意义,也可以用比例的基本性质。

  (9)练习(用自己喜欢的方法来判断)

  12:6和10:51/2:1/3和6:4

  1.5:3和15:0.32/5和12/30

  汇报:

  (10)师:五分之二和三十分之十二相等吗:(板书:2/5=12/30)它是一个比例吗?说出你的理由?(指出这个比例的内项和外项)

  三.巩固练习

  在()里填上合适的数.(想一想,你填数的根据是什么?)

  1.5:3=():4()/40=9/60

  ():4=9:()

  四.课堂小结

六年级数学比的基本性质教学设计8

  教材分析

  比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。

  教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。

  学情分析

  学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的'。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。

  教学目标

  1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)

  2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

  3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

  教学重点和难点

  教学重点:理解比的基本性质。

  教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。

【六年级数学比的基本性质教学设计】相关文章:

“比的基本性质”教学设计及反思04-02

《分数的基本性质》教学设计04-16

分数的基本性质教学设计(精选5篇)08-03

数学上册《分数基本性质》教学反思03-28

等式的基本性质教学反思05-18

《分数的基本性质》教学反思11-15

分数的基本性质教学反思10-26

《等式的基本性质》的教学反思03-31

《分式的基本性质》教学反思06-11