《圆锥的体积》教学设计15篇
在教学工作者实际的教学活动中,通常需要准备好一份教学设计,教学设计是一个系统化规划教学系统的过程。写教学设计需要注意哪些格式呢?下面是小编帮大家整理的《圆锥的体积》教学设计,仅供参考,大家一起来看看吧。
《圆锥的体积》教学设计1
【教学过程】
一、复习
1、圆柱的体积公式是什么?用字母怎样表示?
2、求下列各圆柱的体积。(口答)
(1)底面积是5平方厘米,高是6厘米。
(2)底面半径4分米,高是10分米。
(3)底面直径2米,高是3米。
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。
师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。
生:圆锥的底面是圆形的。
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?
师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师:你们看到过哪些物体是圆锥形状的?(略)
师:对。在生活中有很多圆锥形的物体。
师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?
2、圆锥的体积怎么算?体积公式是怎样的?
学生分组做实验,老师巡回指导。
师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
生:圆锥的体积公式是v=1/3sh。
师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。
师:请大家把书翻到第42页,将你认为重要的`字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。
师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。
例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
(两名学生板演,老师巡视)
师:这位同学做的对不对?
生:对!
师:和他做的一-样的同学请举手。(绝大多数同学举手)
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
三、巩固练习
(1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?
(2)、求圆锥的体积(看图)
(3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。
2、填空。
(1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。
3、选择
(1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。
(2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。
四、课堂总结
师:今天,我们学习了什么内容?怎样计算圆锥的体积?
对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。
五、布置作业
课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)
【教学目的】
1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。
2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。
3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。
【教学重点】
圆锥的体积计算。
【教学难点】
圆锥的体积公式推导。
【教学关键】
圆锥的体积是与它等底等高的圆柱体积的三分之一。
【教具准备】
多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。
【学具准备】
空心圆锥和圆柱实物各一个,沙土若干。
《圆锥的体积》教学设计2
一、教学内容
《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
二、教材分析
本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。
三、教学目标
1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
四、教学重难点
教学重点:圆锥体积的计算公式
教学难点:圆锥的体积公式推导。
五、课前准备
课件
六、教学过程
一、谈话引入
今天,我们来学习圆锥的体积公式是怎样推导出来的?
二、自主探索,操作实验
下面,我们一起来做个小实验
(1)取一个圆柱体的容器和圆锥体的容器各一个。让学生观察一下,得出:这两个容器等底等高。
(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。
(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。用字母表示:v=1/3sh
三、练习填空
1、圆锥的体积=(),用字母表示是()。
2、圆柱体积的与和它()的圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
学生练习,教师总结。
四、巩固练习:
求下面各圆锥的'体积,只列算式。(单位:厘米)
观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。
五、运用所学的知识解决实际问题
一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?
学生思考,教师讲解:
先求半径:18、84÷ 3、14 ÷ 2=3(米)
再求底面积:3、14×3=28、26(平方米)
求圆锥体积:1/3×28、26×6=56、52(立方米)
最后求大米的重量:56、52×500=28260(千克)
六、计算圆锥的体积所必须的条件
学生思考,教师归纳总结
计算圆锥的体积所必须的条件可以是:
底面积和高
底面半径和高
底面直径和高
底面周长和高
只要知道啦其中的两个条件,就可以求出圆锥的体积。
微课学习指导
本微课的教学内容为《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
微课视频共8分53秒,前18秒为片头,后面是利用圆柱的体积推导出圆锥的体积,利用实验推导的过程及练习巩固的过程。
配套学习资料
圆柱的体积公式
圆柱的体积公式等于底面积乘高,用字母表示:V=sh
微课制作技术
1、使用ppt制作片头。
2、使用手机摄录视频效果。
3、使用Camtasia Studio软件和会声会影软件进行后期的混音制作和整合。
4、使用格式工厂进行最后的格式转换。
教学需求分析
适用对象分析:适用于六年级下册的学生,在学习了圆柱的体积之后才能学习此内容。
学习内容分析:《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
学习目标分析:
(1)通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。
《圆锥的体积》教学设计3
一、教学目标
1、知识与技能
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
二、教学重、难点
重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
难点:理解圆锥体积公式的推导过程。
三、教具学具
不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
四、教学流程
(一)创设情境,提出问题
师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?
生:我选择底面最大的;
生:我选择高是最高的;
生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?
生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)
生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。
(二)设疑激趣,探求新知
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的方法。)
生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?
教师根据学生的回答做出最后的评价;
生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?
师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?
小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
师:此种方法是否可行?
学生进行评价。
师:哪个小组还有更好的办法?
生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。
3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?
师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!
要求:1、实验材料,任选沙、米、水中的一种。
2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)
师:1、谁来汇报一下,你们组是怎样做实验的?
2、通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的'体积的1/3。)
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略
师:请看大屏幕,看数学小博士是怎样做的?(课件演示)
齐读结论:
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
(小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则v圆锥=sh÷3即v圆锥=1/3sh
师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?
(噢!三种冰淇淋的体积原来一样大)
五、联系生活,拓展运用
本练习共有三个层次:
1、基本练习
(1)判断对错,并说明理由。
圆柱的体积相当于圆锥体积的3倍。( )
一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是( )
一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )
(2)计算下面圆锥的体积。(单位:厘米)
s=25.12 h=2.5
r=4, h=6
2、变形练习
出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,
得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,
(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?
(2)、找一找这些计算方法有什么共同的特点? v锥=1/3sh
(3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?
3、拓展练习
一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?
活动五:整理归纳,回顾体验
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)
《圆锥的体积》教学设计4
第一课时
教学目标:
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学过程:
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的'方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
……
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()
圆锥的底面积是10,高是9,体积是()
(二)算一算
学生独立计算,集体订正.
说说解题方法
三、全课小结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
四、课后反思
第二课时
教学目标:
1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。
2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。
3、进一步熟悉圆锥的体积计算
教学难点:
圆锥的体积计算
教学重点:
圆锥的体积计算
教学过程:
一、基本练习
圆锥体积计算公式
相邻两个面积单位之间的进率是多少?
相邻两个体积单位之间的进率是多少?
二、实际应用
占地面积是求得什么?
三、实践活动
四、课后反思
《圆锥的体积》教学设计5
教学目标:
1、掌握圆锥的体积公式,能运用公式进行计算。
2、在观察、实验、讨论等活动中探索圆锥的体积公式。
3、体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。
教学重点:
1、使学生探索出圆锥的体积公式。
2、初步掌握圆锥体积的计算方法并解决一些实际问题。
教学难点:探索圆锥体积的计算方法和推导过程。
教学过程:
一、情境导入
1、课件出示图片
引导学生指图说出冰淇淋形状像我们学过的什么几何体?圆锥
2、导入:同学们,冰淇淋形状像我们学过的圆锥体,你喜欢吃冰淇淋吗?那么冰淇淋体积有多大呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知:
(一)圆锥的体积公式探讨
师:大家猜想,探求圆锥的体积,会和我们学习过的那种形体有关系?(圆柱)为什么?底面都是圆形
师:我们的猜想是真的吗?圆柱和圆锥的体积之间有没有关系?有什么样的关系?让我们来做一个实验来验证一下吧!
出示圆柱和圆锥图片,演示等底等高
师:今天用来试验的教具有点特殊,他们的底相等,高也相等。
教师引导提出要求:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,用圆锥把圆柱装满需要几次,看它们之间有什么关系,并想一想通过实验你发现了什么?
学生分组实验
每小组推举一名学生汇报实验结果:
当圆柱和圆锥的`底面积相等,高相等时,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.(教师多媒体演示)
所以我们的结论是:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的
3、教师出示两个大小悬殊的圆锥和圆柱,请同学猜测,圆锥的体积是否还是圆柱的三分之一?(进一步强调等底等高,教师演示)
4、师生共同总结结论:圆锥的体积等于和它等底等高的圆柱体积的1/3。
如果用用v表示圆锥的体积,s表示圆锥的底面积,h表示圆锥的高,圆锥的体积公式可以表示为:v= 1/3 sh
(二)简单应用尝试解答
判断:
1、圆柱的体积是圆锥体积的3倍。()
2、圆柱的体积大于与它等底等高的圆锥的体积。()
3、圆锥的高是圆柱的高的3倍,它们的体积一定相等。()
填空:
1、一个圆柱的体积是,与它等底等高的圆锥的体积是()m。
2、一个圆锥的体积是,与它等底等高的圆柱的体积是()cm。
例题:(出示课件)
工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数。)
(生独立列式计算,小组交流,是指名组长出示答案)
巩固练习,运用拓展
一、求下图中圆锥体积。(略)
二、一堆煤成圆锥形,底面半径是,高是。这堆煤的体积是多少?如果每立方米的煤约重吨,这堆煤约有多少吨?(得数保留整数。)
三、提高拓展
有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。圆锥的体积是多少立方厘米?要削去钢材多少立方厘米?
总结:你学到了什么?
板书
圆锥的体积
等底等高v锥=1/3v柱=1/3sh
教学内容:
本节教材是人教版六年级数学下册第二单元“圆锥的体积”部分,课本第25-26页。这部分内容是在学生已经认识圆锥的特征和会圆柱体积计算的基础上学习的。学习过程中要引导学生探索并掌握圆锥的体积公式。然后能够根据公式及变形公式进行计算。
《圆锥的体积》教学设计6
教学过程:
一、复习导入。
1、怎样计算圆柱的体积?(板书公式)
2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?
3、出示一个圆锥,请学生说说圆锥的特征。
4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)
二、动手测量,大胆猜想。
1、动手测量,找圆锥和圆柱的底和高的关系。
师:为了我们研究圆锥体积的方便,每个小组都准备了一个圆柱和一个圆锥。下面请同学们以小组为单位,动手测量一下,你们手中的圆柱和圆锥,看看你能发现什么?
2、学生动手测量,教师巡视。给予指导。
3、交流得出结论:圆柱和圆锥等底等高。
4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?
三、实验操作,推导出圆锥体积计算公式。
1、实验操作。
师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。
2、学生分组实验,教师巡视。
3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?
4、强调等底等高。
5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)
6、练习(出示)
(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。
(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。
7、得出圆锥的体积计算公式。
8、用字母表示圆锥的体积计算公式。
三、巩固练习。
1、计算下面圆锥的体积。(只列式不计算)
底面积是6.28平方分米,高是9分米。
底面半径是6厘米,高是4.5厘米。
底面直径是4厘米,高是4.8厘米。
底面周长是12.56厘米,高是6厘米。
2、填空。
a圆锥的'体积=(),用字母表示是()。
b圆柱体积的与和它()的圆锥的体积相等。
c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。
3、判断。(用手势表示)
a圆柱体的体积一定比圆锥体的体积大()
b圆锥的体积等于和它等底等高的圆柱体的()
c正方体、长方体、圆锥体的体积都等于底面积×高。()
d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()
四、全课小结。
师:今天这结课学习了什么?通过今天的学习研究你有什么收获?
五、解决实际问题。
在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
《圆锥的体积》教学设计7
设计意图:
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。
教学目标:
1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。
2、会应用公式计算圆锥的体积并解决一些实际问题。
3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。
教学重点:
使学生初步掌握圆锥体积的计算方法并解决一些实际问题
教学难点:
圆锥体积计算方法和推导过程。
教学过程:
一、复习铺垫:
1、揭示课题:今天我们一起来探究如何计算圆锥的体积。
2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?
二、实验操作:
1、请看接下来的2个实验:
2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。
3、播放视频:
实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。
实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。
4、通过实验你们发现了什么?
三、公式推导:
1、通过两次的实验我们可以得出结论:
圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。
2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。
3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。
4、在应用圆锥体积公式时不要忘记乘!
四、知识应用
1、接下来我们应用公式解决实际问题。
题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1。2m。这堆沙子大约有多少立方米?(得数保留两位小数)
2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。
3、列式解答。(分步与综合)
五、知识小结:
今天我们学习了圆锥的体积计算:V= Sh= πr2h。
在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!
六、结束。
【课堂教学设想】
1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的实验操作做了铺垫。
2、课堂上组织学生分小组实验:
圆柱与圆锥等底不等高时,实验结果会怎样?
圆柱与圆锥等高不等底时,实验结果会怎样?
“圆锥的体积是圆柱体积的”这一关系存在的条件是什么?
圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?
3、课堂检测,促进知识内化。
【教学反思】
本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,所以设计时力求每个环节都为教学目标服务。
课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的',让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。
课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。
《圆锥的体积》教学设计8
教学内容:
九年义务教育六年制小学数学第十二册第48-50页。
教学目的:
1.使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。
2.培养学生初步的空间观念、逻辑思维能力、动手操作能力。
3.向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。
教学重点:
圆锥的体积计算。
教学难点:
圆锥的体积公式推导。
教学关键:
圆锥的体积是与它等底等高的圆柱体积的二分之一。
教具准备:
投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。
学具准备:
等底等高的圆柱和圆锥空心实物各一个
教学过程:
一、复习
1.圆柱的体积公式是什么?
2.底面积是19平方厘米,高是20厘米,求圆柱的体积是多少立方厘米?
[说明:圆锥的体积,是与它等底等高的圆柱体积的1/3。因此,先复习圆柱的体积计算方法,抓住所学知识间的内在联系,为学习圆锥的体积计算方法作了很好的铺垫。]
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。
板书:圆锥的体积
[说明:设疑激趣,激发学生探求新知识的欲望。l
二、新课教学
师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)
投影出示下图:
师:圆锥的底面是什么形状?
生:圆锥的底面是圆形的。
师:对。什么是圆锥的高呢?
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?
师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师演示:将刚才出示的圆锥图上的高往外移,标上字母h,如图所示:
师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?
生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。
师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)
师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的部分等等。谁上来指一指这支铅笔圆锥型部分?(略)
师:对圆锥我们已经有了一个初步的认识。现在,我们一起来看一组圈,请你判断这些图中哪些是圆锥?哪些不是?为什么?
投影出示下列图形:
生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。
师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?
生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。
师:说得有道理。你能不能将这个圆锥摆正。
(一名学生到前面旋转投影片,将圆锥图形一一摆正)
师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。
[说明:圆锥的认识,教师是让学生通过看书自学去获得的。教师通过不断设疑,层层深入,帮助学生对书上内容逐步深化;然后,以生活中的圆锥形物体,进一步帮助学生加深认识;最后,用一组判断题要学生鉴别哪些是圆锥,哪些不是圆锥,符合学生的认知规律,从而达到知识的强化目的。]
师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积(出示教具)。这是一个空心圆锥,这是一个空心圆柱。它们之间有什么关系呢?我们先来比较它们的底面。(师演示:将圆锥和圆柱的底面合在一起,完全重合。)
生:它们的底面是相等的。
师:我们再来比较它们的高。(师演示:用一把直尺架在两者之间,然后分别量一量它们的高。)
生:它们的高也是相等的。
师:那也就是说,这两个圆柱和圆锥是等底等高的。下面我们采用实验的方法来推导圆锥体的`体积公式(边说边演示),先在圆锥内装满水,注意大拇指不要伸进去,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1.实验器材中,圆锥的底面和圆柱的底面有什么关系?官们的高有什么关系?
2.圆锥的体积和同它等底等高的圆柱的体积有什么关系?
3.圆锥的体积怎么算?体职公式是怎样的?
学生分组做实验,老师巡回指导。
师:我们先来回答第一个问题。在你们做实验用的
器材中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?
生:在实验器材中,圆锥的底面和圆柱的底面是相等的,它们的高也是相等的。
师:我们再来讨论第2个问题。圆锥的体积和同它等底等高的圆柱的体积有什么关系?
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满水,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
生:圆锥的体积公式是V=1/3Sh。
师:请大家把书翻到第49页,将你认为重要的字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。这两个是等底不等高的圆锥和圆柱,边两个是等高不等底的圆锥和圆柱,我请两个同学上来用刚才做实验的方法试试看。
(请两名学生上讲台示范实验)
师:现在大家看清楚了吗?等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。
生齐答:不是。
[说明:变教具为学具,让学生亲自动手实验,使听党、视觉、触觉等各种感官一起参与活动,通过自己亲自动手操作,努力去探索圆锥体积的计算方法,这样的学习,学得活,记得牢,既发挥了教师的主导作用,又充分体现了学生的主体地位。]
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系,口答三道题目。师:出示小黑板,口算。
求与下面圆柱等底等高的圆锥体的体积。
1.圆柱体的体积是3立方厘米;
2.圆柱体的体积是2.4立方分米;
3.圆柱体的体积是1/2立方米;"
生答略。
师:大家回答得很好。接下来,请大家用圆锥的体积计算公式来解答一道应用题。师出示第50页例1。
例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
(两名学生板演,老师巡视)
师:这位同学做的对不对?
生:对!
师:和他做的一-样的同学请举手。(绝大多数同学举手)
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验4知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3Sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
三、巩固练习
师:现在我们一起来做填表练习。
出示小黑板:
1. 填表:
底面积S (平方米) 高h(米) 圆锥的体积(立方米)
15 9 ()
16 0.6 ()
师:两题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。
2.求下面各圆锥的体积。
(1)半径是3米,高是2米。
(2)直径是4分米,高是6分米。
(3)周长是6,28厘米,高是3厘米。
3.有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)
[说明:练习有层次,形式多样。最后一个层次的练习,又回到动手实验上,而且强化的仍然是本节课最基本、最关键的内容。]
师:这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用V=1/3Sh这个公式算圆锥体积时,要特别注意什么。
《圆锥的体积》教学设计9
指导思想与理论依据:
本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。
教学背景分析:
(一)教学内容分析:
1、教材内容:
本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
2、研读完教材后,自己的几个问题:
(1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?
(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。
(3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?
(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?
3、自己的创新认识:
首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。
其次,是要提供给同学们一个可操作的空间。
(二)学情分析:
1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的'知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。
2、自己的认识:(结合自己在讲课时发现的问题而谈)
学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。
(三)教学方式与教学手段分析:
根据本节课的教学内容及特点,在教学设计过程中我选择了 “操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。
(四)技术准备与教学媒体:
在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。
教学目标设计:
(一)教学目标:
1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。
3、培养学生的观察、分析的综合能力。
(二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积
(三)教学难点:通过实验的方法,得到计算圆锥体积的公式。
《圆锥的体积》教学设计10
教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用
学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件
教学时间:一课时
教学过程:
一、复习
1、圆锥有什么特征?(课件出示)
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
学生分组实验。
汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。
多指名说
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的.。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 ×圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高
师:用字母应该怎样表示?
然后板书字母公式:V=1/3 SH
师:在这个公式里你觉得哪里最应该注意?
教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
1/3×19×12=76((立方厘米))
答:这个零件体积是76立方厘米。
做一做:课件出示,学生回答后,教师订正。
1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?
2、已知圆锥的底面半径r和高h,如何求体积V?
3、已知圆锥的底面直径d和高h,如何求体积V?
4、已知圆锥的底面周长C和高h,如何求体积V?
5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?
例2课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
判断:课件出示,学生回答后,教师订正。
1、圆柱体的体积一定比圆锥体的体积大( )
2、圆锥的体积等于和它等底等高的圆柱体积的 ( ) 。
3、正方体、长方体、圆锥体的体积都等于底面积×高。 ( )
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米( )
四、教师小结。
这节课我们学习了哪些知识?你还有什么问题吗?
五、作业。课本练习
《圆锥的体积》教学设计11
教学内容:
小学数学人教版第12册42页—43页
教学目标:
1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
3、培养学生个人的自主学习能力和小组合作学习的能力。
教学重点和难点:
掌握圆锥体体积公式的推导。
教具准备:
1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。
2、多媒体课件设计
教学过程设计
(一)复习准备:
1. 怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)
2. 一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
3. 圆锥有什么特征?
学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。
(二)导入新课
今天我们就利用这些知识探讨新的问题-----怎样计算圆锥的体积(板书课题)
(三)进行新课
1、 探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱------(转化)------长方体
圆柱体积公式--------(推导)长方体体积公式
教师:借鉴这种方法, 为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底 等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验。
A. 谁来汇报一下,你们组是怎样做实验的?
b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
呢?(在等底等高的情况下。)
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
今后我们求圆锥体体积就用这种方法来计算。
(四)巩固反馈
1.口答。填空:
v (立方米)
v (立方米)
60
52
126
4.5
2.出示例题学生读题,理解题意,自己解决问题。
例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的.体积是多少?
A 学生完成后,进行小组交流。
B 你是怎样想的和怎样解决问题。(提问学生多人)
C 教师板书:
×19×12=76(立方厘米)
答:它的体积是76立方米
3.练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
4、出示例2:要求学生自己读题,理解题意思。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:3.14×( )×1.2× 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….
5、比较:例1和例2有什么地方不同?
(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
四、巩固练习:
1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )
⑴ 立方米 ②3a立方米 ③ 9立方米
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米
(1)6立方米 (2)3立方米 (3)2立方米
2、 学生操作:
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)
指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。
五:这节课你有什么收获?
六、作业:书本44页第3、4、5。
板书: 圆柱体的体积=底面积×高
例1: ×19×12=76(立方厘米)
答:它的体积是76立方米
例2:(1)麦堆的体积:
3.14×( ) =12.56(平方米)12.56× ×1.2=5.024(平方米)
(2)小麦的重量:5.024×735=3692.64(平方米)≈3693(平方米)
答:它的体积是76立方米
《圆锥的体积》教学设计12
教学内容:人教版九年义务教育小学数学教科书第十二册。
整体感知:这部分知识是学生在有了圆锥的认识和圆柱体积相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。
教学目的:
1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。
2、让学生经历猜想——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。
3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。
[点评:知识与技能目标的设计全面、具体、有针对性。不但使学生掌握圆锥体积的计算公式,而且培养了学生运用圆锥体积公式解决生活中的实际问题的能力,使学生体会到数学与生活的密切联系注。并注重对学生“猜想——————验证”、“合作——————探究”等学习方式的培养及“转化”数学思想方法的渗透;同时关注学生空间观念的培养及唯物辩证思想的渗透。
教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题。
教学过程:
一、 创设情境导入新课。
1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?
2、引导学生自己想办法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。)
3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。
[点评:本环节通过一系列的问题情境,激发学生学习新知识的兴趣。首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。这样不仅巩固了前面所学的知识,而且培养了学生的问题意识。然后放手让学生自己想办法用不同的方法求它的体积,拓展了学生的思维,培养了学生的创新能力,真正体现了学生的主体地位。最后让学生从具体的问题中体会到自己方法的太麻繁、不实用,从而让学生有思索出一种更简洁、广泛的求圆锥体积的方法需要。]
二、经历体验,探究新知
(一)渗透转化,帮助猜想
1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。
2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这部分圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的发现进行汇报。
3、课件出示:等底等高的圆柱和圆锥。组织学生认真观察,大胆猜想他们体积之间可能存在怎样的关系后说说理由。教师此时要引导学生展开想象的翅膀大胆去猜想……
[点评:本环节教师先引导学生回忆圆柱体积的推导过程,向学生渗透“转化”的思想。使学生感受到新知也可通过“转化”的方法变成已学过的知识来解决。然后留给学生充分的时间亲自动手去削铅笔,感受到圆锥是怎样转化成圆柱的。通过观察比较、讨论交流一步一步得出圆锥的体积和它等底等高的圆柱有关。同时运用学生已有的知识和经验让学生进行猜想它们之间有怎样的关系,发展了学生的想象空间,培养了学生的创新思维。]
(二)小组合作,实验验证。
1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录……实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。
2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。
3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的.1/3,圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:
概括板书:
等底到高
V圆柱=Sh V圆锥= 1/3sh
4、深化公式。组织学生讨论给出不同的条件求圆锥的体积,如:半径、直径、周长。预设板书如下:
V =1/3πr2h V =1/3(c/2π)2h V =1/3(d/2)2h
5、教师组织学生独立完成书中例题后集体订正。
[点评:俗话说:“实践是检验真理的唯一标准。”学生在前面猜想的基础上通过小组合作动手实验、具体操作,验证得出等底等高的圆锥与圆柱体积间的关系,使自己的猜想在这里得到了验证。这一过程的设计潜移默化地向学生渗透了“猜想——————验证”这一完整的学习数学的方法。从而也培养了学生合作的意识、发展了学生的思维、培养了学生的创新意识和实践能力。最后从等底等高的圆柱与圆锥体积间的关系及圆柱的体积公式中,得出了圆锥体的体积公式。这个过程,让学生充分经历了知识的形成过程,体现了“动态生成”,为抽象的理论提供了感性材料。]
(三)看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。
[点评:伟大的科学家爱因斯坦曾说过:“提出一个问题比解决一个问题更重要。”学生经历了问题的探索过程后,再将他们引加到书本上。这时学生的可能提的更有价值、有深度。]
三、巩固新知,拓展应用。
1、判断并说明理由
(1)圆柱体积是圆锥体积的3倍( )
(2)一个圆锥的高不变,底面积越大,体积越大。( )
(3)一个圆锥体的高是3分米,底面积10平方分米,它的体积是30立方分米。( )
组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的1/3是以等底等高为前提的。
2、求下列圆锥的体积(口答,只列式,不计算)
s=4平方米,h=2平方米
r=2分米,h=3分米
d=6厘米,h=5厘米
组织学生根据圆锥体积公式解答。
3、实践与应用:
学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好办法?
组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。
[点评:练习设计由浅入深,由例题到实践应用,层次鲜明,并注重培养学生解决实际问题的能力,达到学以致用的目的]
四、课后总结,感情升华。
这节课你有什么收获?你是怎样获得的?
[不仅关注学生知识技能的掌握,更注重数学方法的提炼及学生的情感、态度、学习数学的信心等,促进了学生的可持续发展。]
[总评:
1、钻研教材,创造性地使用教材。
教师在充分了解学生、把握课程标准、教学目标、教材编写意图的基础上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削”的过程中体验到圆柱与圆锥的联系;再如动手实验这一环节的设计,使学生在观察、比较、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活的密切联系。
2、注重数学思想方法的渗透。
数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想办法求圆锥的体积,此时学生便想办法将圆锥体的容器装满水后倒入圆柱或长(正)方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化”的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。
3、猜想—————验证、合作交流等学习方式体现了学生的主体地位。
本节课在探究新知的过程中,借助削铅笔这一学生熟知的活动帮助学生猜想圆锥的体积可能会与谁有关,再进一步猜想又会有怎样的关系。紧接着让学生在具体的实验操作中去验证自己的猜想是否正确,从而得出结论。整个过程是在教师的引导下,学生自主探索,发现问题,在合作交流中解决问题。教师留出了充足的时间,让学生去思考、讨论、探索、争辩和交流。真正体现了人人学有价值的数学,不同的人在数学上得到不同的发展
《圆锥的体积》教学设计13
教学目的:
1、情感目标培养学生探索合作精神。
2、知识目标理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,以及运用公式计算圆锥体积。
3、能力目标培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。
重点
理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。
难点
圆锥体积计算公式的推导过程。
关键
公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。
活动一:比大小
活动目的:激发求知欲望。
课件播放:春天到了,万物复苏,春笋也从睡梦中醒来,三只可爱的小熊猫来到竹林中踩竹笋,它们都踩到了一只竹笋。熊猫都都说:今天我踩的竹笋是最大的。熊猫眯眯听了不服气的'说:谁说的,第一大的应该是我的竹笋。熊猫花花也不甘示弱的说:不对,不对,我的竹笋应该是第一大!
师:竹林里的争论还在继续着,同学们,到底三只熊猫的竹笋谁的最大呢?让我们来猜一猜吧!
师:我们光是猜,说服力并不强,那么能找到什么真正能解决问题的办法吗?
活动二:议一议
活动目的:通过师生、生生的互动讨论、交流、探究,从而发现圆锥的体积和圆柱的体积有关。
1、出示课题
2、找圆锥体和学过的什么体有相似之处
3、猜一猜,圆柱的体积和圆锥的体积的关系。
《圆锥的体积》教学设计14
一、教学内容:
六年制小学数学教材第十二册第25-26页
二、教学目标:
1、知识技能目标:
◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;
◆使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。
3、情感态度目标:
◆培养学生的合作意识和探究意识;
◆使学生获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积方法和推导过程。
教学过程:
一、质疑引入
1 圆锥有什么特征?指名学生回答。
2 说一说圆柱体积的计算公式。
(1)已知 s、h 求 v
(2)已知 r、h 求 v
(3)已知 d、h 求 v
3 我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
二、新课
(一) 教学圆锥体积的计算公式
1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体- 长方体的体积公式----推导圆柱体公式)
2、 教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?
先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式
〈1〉学生独立操作
让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。先在圆锥里装满水,然后倒入圆柱。看几次正好把圆柱装满?
〈2〉教师教具演示巩固学生的操作效果,cai课件演示
a 屏幕上出示等底、等高
b 等底、不等高
c 等高、不等底
实验报告单
实验器材
实验结果
等底不等高的圆锥、圆柱
等高不等底的圆锥、圆柱
等底等高的圆锥、圆柱
〈3〉引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的 1/3 (板书 )
用字母表示圆锥的体积公式.v锥=1/3sh
做一做:
填空:
等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的( ),圆锥的体积是圆柱的体积的( )已知圆锥的体积是9立方分米,圆柱的体积是( );如果圆柱的体积是12立方分米,那么圆锥的体积是( )。
(二)运用公式,尝试练习
1、要求圆锥的体积,必须知道哪两个条件?为什么要乘 1/3 ?
试一试:
一个圆锥体,底面积是19平方米, 高是12分米。这个圆锥的体积是多少?《圆锥的体积》教学设计 相关内容:第四单元 圆 全单元教案六下第一单元 负数 教材分析《圆锥的认识》说课《分数乘分数》教后反思《纳税》教案 人教版第十一册教案百分数(五)折 扣圆柱的表面积第三单元分数除法:分数除法的意义和整数除以分数查看更多>> 小学六年级数学教案
2、思考:求圆锥的体积,还可能出现那些情况?
(如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)
练一练
3、求下面的体积。(只列式不计算)
(1)底面半径是2 厘米,高3厘米。
3.14×22×3
(2)底面直径是6分米,高6分米 。
3.14×(6 ÷2)2 ×6
(3)底面周长是12.56厘米,高是6厘米
3.14×(12.56 ÷6.28)2 ×6
2、求下面各圆锥的'体积如图(单位厘米)
(1)底面直径是8分米,高9分米 (2)底面半径3分米和高7分米
通过公式我们发现计算圆锥的体积所必须的条件可以是底面积和高
a、底面积和高
b、底面半径和高
c、底面直径和高
d、底面周长和高
三、巩固练习
1、判断:
⑴、圆锥的体积等于圆住体积的1/3。( )
⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3 ( )
⑶圆柱的体积比和它等底等高圆锥的体积大2倍。( )
⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的
2、填空
⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米,圆柱的体积是( )。
⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是 12 厘米, 圆锥的高是( )。
⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是( )。
3、拓展练习
工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数)
(引导学生说出怎样测量沙堆的底面的周长、直径、和高。)
用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。
《圆锥的体积》教学设计15
教材简析
本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
学情分析
本班为七年级,一共有7人,共4名男生3名女生,障碍类型为听力障碍。A层学生两位具有剩余听力,空间思维好,能够较好的掌握和运用知识。B类生理解和运用能力一般,基本能够掌握知识和技能;C类生只能进行手语沟通与交流,能够参与简单的教学活动。
教学目标
1.知识与能力:理解和掌握求圆锥体积的计算公式,运用公式正确地计算圆锥的体积。
2.过程与方法:通过“想一想、做一做”等活动过程,获得圆锥体积的推导过程和学习的方法。
3.情感态度与价值观:在活动过程中体会转化方法的价值,向学生渗透知识间"相互转化"的辩证唯物主义思想,培养学生的动手操作能力和自主探索能力。
教具和学具
准备
PPT课件、同底等高的圆柱和圆锥教具、沙
课时安排
两课时
本节课所授课时
第一课时
教学重点
探索并掌握圆锥体积计算公式
教学难点
体会圆锥体积推导过程,理解转换思想
教学过程设计
设计意图
一、创设情境
呈现小麦堆,粮仓。秋天到了丰收了一堆小麦。
明确是什么,对于的立体图形
提问粮仓装的下吗?为什么呢?
创设生活情境,激发学生学习热情。
二、探究新知
1、观察
动画呈现,让学生观察出小麦堆(圆锥)和粮仓(圆锥)等底等高。
让学生能够感知等底等高时,圆柱比圆锥装的更多。
2、实验
把小麦堆和粮仓搬上课堂
A、提问:哪一个装的多?明确圆柱体积更大。
B、研究:圆锥的体积和圆柱的体积有什么关系?
C、猜想:等底等高时,S三角形=1/2S长方形
那么,V圆锥=1/2V圆柱也是一半?
猜一猜,圆锥的体积等于它等底等高圆柱体积的几分之几?
学生进行猜想。进行验证。
D、进行实验(分组进行)
介绍两个小组具体任务。
教师协助实验进行,边让其完成实验报告
实验器材米袋、等底等高的圆柱和圆锥各一个实验过程用圆锥装满沙子,往等底等高的圆柱里倒,倒(X)次才能将圆柱倒满。圆柱中装满沙子,可以装满(X)个等底等高的圆锥。实验结论
学生实验之后,教师示范试验。
学生经过实验,得出结论:
(1)圆椎的体积是圆柱体积的3倍;
(2)圆锥的体积是圆柱体积的三分之一;
E、验证猜想
经过试验,我们知道了圆锥的体积等于它等底等高圆柱体积的1/3.
原本猜想1/2,经过实验得出为1/3.引导学生“实践出真知”。
F、引导学生总结出公式
1.培养学生的.观察能力,初步突破了本课的难点,为接下来活动开展作好了铺垫。
2.通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
3、应然与实然的不同,让学生体悟到,不能想当然要实践出真知。
4、推出公式,便于实际应用运用
三、应用练习
1、一个圆锥的底面积半径是2m,高是3m,它的体积是多少?
2、一个圆锥的底面积直径是6厘米,高是10厘米,它们体积是多少?
3、测出小麦堆底面周长为12.56m,高为3m,小麦堆的体积是多少呢?1立方小麦的平均重量约为750公斤,这堆小麦多重呢?
1、第1、2由学生自己写,检验学生学习成果
2、第3题练习情境,在半径和直径不宜测量的情况下,只能测量周长是,求圆锥是体积。
四、小结
1、总结今日学习重点
五、作业
教材p64-65
板书设计
【《圆锥的体积》教学设计】相关文章:
《圆锥的体积》教学设计07-02
圆锥体积教学设计02-24
(经典)圆锥的体积教学反思05-16
《圆锥的体积》教学反思02-10
圆锥的体积教学反思06-17
《圆锥的体积》教学反思05-16
(必备)圆锥的体积教学反思05-16
数学圆锥的体积教学反思12-02
关于圆锥的体积教学反思03-09