小数的意义教学设计(优)
作为一名教学工作者,时常要开展教学设计的准备工作,教学设计是实现教学目标的计划性和决策性活动。一份好的教学设计是什么样子的呢?下面是小编精心整理的小数的意义教学设计,欢迎阅读与收藏。
小数的意义教学设计1
教学目标:
1.让学生将一张正纸方形平均分成十份、一百份…的基础上,通过涂一涂、想一想、说一说的过程中理解小数的意义。
2.使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
3.培养学生操作、观察、分析、推理的能力。
教学重点和难点:
小数意义的理解。
教学准备:
每个学生空白正方形纸一张、信封(内放平均分成了十份和平均分成了一百份的正方形纸各一张),课件。
教学过程:
一、 导入课题
师:同学们,你们熟悉《三字经》吗?我们来一起背几句好吗?(生背)
师:《三字经》中有这样一句话“一而十,十而百,百而千,千而万”你知道是什么意思吗?
生1:这句话的意思是十个一是十,十个十是一百,十个一百是一千,十个一千是一万。
(师从右往左板书:10000 1000 100 10 1)
师:看来,《三字经》中也藏着有趣的数学问题,观察刚才的一组数,从右往左看,从1开始,10个1是10,10个10是(100),10个100是(1000),10个(1000)是(10000),按这样的规律,接下去应该是哪些数呢?
生1:接下去是100000、1000000…。
师:无穷无尽。(板书:100000…)
师:从左往右看,10000、1000、100、10、1,接下去又是哪些数呢?
生2:0.1、0.01、0.001…
师:也是(无穷无尽)。(板书:0.1,0.01,0.001…)
师:这里的0.1、0.01、0.001…表示什么意思,它们之间的进率又是多少呢?就是今天我们要学习的“小数的意义”。
[评析:《三字经》是我国不可多得的儿童启蒙读物,可谓家喻户晓,脍炙人口,深受儿童所喜爱,从《三字经》中的数学问题入手,很吸引儿童的眼球。在学生还没有接触“扩大到、缩小到”这些数学术语之前,教师通过让学生观察10000、1000、100、10、1这一数组,引导学生根据一组数的规律进行推理,自然地引出了课题。更妙的是,从“大数学”中去看小数,建立了整数和小数间的联系,并在无形中渗透了进率关系,为学生进一步学习小数的意义打下伏笔。]
二、 小数意义的探究
1.探究一位小数的意义。
师(出示正方形纸):如果我们用一张正方形纸表示“1”话,请你估计一下,0.1该有多大?
师:请将你心目中的0.1用彩色笔在这张纸上涂出来。
(展示:师根据学生所涂,取三份有代表性的作品进行投影展示)
师:对于这三个同学心目中0.1的大小,你有什么想说的?
生1:第一张涂得太多了,我觉得有0.5啦,第三张涂得又太少,没有0.1,第二张和0.1差不多。
师:你们觉得怎样能准确地在这张纸中表示出0.1呢?
生2:把这张正方形纸看作“1,平均分成十份,涂出其中的一份,就是0.1。
师:这里的一份还可以用什么数来表示?
生3:十分之一。
师:老师给每位同学们都准备了一张平均分成十分的正方形纸,请你从信封里拿出来,并在这张纸上涂出其中的3份,想一想,涂色部分可以用一个怎样的小数来表示?它里面有多少个0.1?
师(展示):0.3表示什么意思呢?
生4:0.3就是表示把一张纸看作“1”,平均分成十份,取其中的三份,用小数表示就是0.3,还可以用分数十分之三来表示,0.3里面有3个0.1。
师:涂色的部份用0.3表示,哪么空白部份呢?
生5:空白部份用0.7表示。
师:0.7表示什么意思?还可以用什么数来表示?它里面有多少个0.1?
师(投影):阴影部份用小数怎样表示?
生7:阴影部份可以用小数0.8表示。
师:0.8里面有多少个0.1呢?
生7:0.8里面有8个0.1。
师:看到这个图,你还能想到哪个数?
生8:十分之八。
生9:0.2,十分之二。
师:想一想,1里面有多少个0.1呢?
生10:1里面有10个0.1。
师:思考一下,刚才这些小数我们都是怎么得到的?
生11:刚才我们都是把一张正方形纸看作“1”。平均分成十份,取其中的几份就是零点几。
师:如果用分数表示,也就是(十分之几)。
师:看来,这些小数,都是用来表示(十分之几)的。(板书:十分之几)
[评析:以往的教学,教师习惯通过将米尺平均分成十份,每份是1分米,也就是十分之一米,用小数表示就是0.1米,学生在接受这一知识上,没有任何理由,就是一种规定。本课从学生的生活经验出发,将 1平均分成十份,每份就是0.1,来,再结合分数的意义,0.1也等于十分之一,通过意义上的联系,借助十进分数来进一步帮助学生理解小数,这一招可谓精妙至极。让学生在一张正方形纸上表示出0.1的大小,这一设计很有新意,在让学生动手操作的过程中,感悟一位小数和分母是十的分数之间的关系。通过用小数表示涂色部分和空白部分,让学生说说它们里面各有多少个0.1,深刻体会1里面有10个0.1。]
2.探究二位小数的意义
师: 0.01你觉得有多大呢?请同学们在头脑里想像一下,很快地涂在刚才这张纸的反面。
师(作品展示):你是怎么思考的?
生1:我是将0.1再平均分成十份,每份就是0.01。
生2:我是将一张正方形纸平均分成一百份,每份就是0.01。
师:从这里我们可以看出,1里面有(100)个0.01。
师:看到0.01,你还会想到了哪些数?
生:
生:
师:请同学们在信封里取出平均分成了一百份的正方形纸,现在请你在这张方格纸上创造一个小数,先在方格纸上任意涂上一些格字,再想一想,你涂色的部分可以用一个怎样的小数来表示?再同桌间说一说这个小数表示什么意思?看到这个小数,你还会想到哪些数呢?
生5:…
生6:我涂了20个格字,用小数表示是0.20。
师:你们知道这里的涂色部分除了可以用0.20表示外,还可以用哪个小数来表示吗?你是怎么想的?
生7:也可以用0.2来表示。…
师:刚才的这些小数我们又是怎么得到的呢?
生8:把一张正方形纸看作“1”。平均分成一百份,取其中的几份就是零点零几或零点几几。
师:这些小数,又都是用来表示什么的.呢?
生9:这些小数都是用来表示百分之几的数。(板书:百分之几)
[评析:在学生学习了一位小数意义的知识基础上,进一步探究两位小数的意义,就变得水到渠成。学生在将0.1平均分成十份和将1平均分成一百份来表示0.01的过程中,创新思维得到了充分发展。在创造小数的过程中,学生的个性得到了充分的张扬,当学生涂出20份来0.20 来表示的时候,教师不失时机地引导学生,这个涂色部份可以用哪个小数来表示,巧妙地渗透小数性质这一知识点。]
3.探究三位小数的意义
师:对于0.001,你有什么想说的?
生1:把一张纸平均分成1000份,每份就是0.001。
生2:也可以把0.01平均分成十份,每份也是0.001。
生3:还可以把0.1平均分成一百份,每份也是0.001。
生4:0.001很小很小。
师:看到0.001,你会想到哪些小数?
生5:我想到了0.365,就是涂365个0.001。
…
师:这些小数又是用来表示什么呢?(板书:千分之几)
师:除了有表示千分之几的小数外,还会有表示(万分之几、十万分之几…
的小数,无穷无尽。
[评析:在学习三位小数所表示的意义上,教师完全放手,让学生通过已有的知识展开推理,自己去体验、感悟,学生获得的不仅是“鱼”,更是“渔”。]
三、 小数意义的提炼
师:刚才我们认识了这么多的小数,想一想,什么是小数?
生1:这些小数都是用来表示十分之几、百分之几、千分之…的。
师:用来表示十分之几、百分之几、千分之几……的数,叫做小数。(板书)观察这些十分之几的小数、百分之几的小数、千分之几的小数,他们又有什么不同呢
生2:表示十分之几的小数的小数点后面有一个数字。
师:像这样小数点后面只有一个数字的小数我们叫它为一位小数。
生2:表示百分之几的小数,它的小数点后面有二个数字…
…
师:你知道一位小数的计数单位是多少吗?
生:一位小数的计数单位是0.1。
师:0.3里有几个0.1?两位小数的计数单位呢?三位小数呢?
…
师:你能用一句话来概括这些计数单位之间的进率关系吗?
生:每相邻两个计数单位间的进率是10。
师:如果不相邻,它们的进率又是怎样的呢?
[评析:学生在课堂中,通过多次折一折、涂一涂、想一想、说一说的实践,为学生小数意义的理解和归纳扫平了障碍。在计数单位之间进率的掌握上,由于有前期通过多种方法得到0.01和0.001的基础,为每相邻两个计数单位间的进率和不相邻两个计数单位间进率的掌握变的轻而易举。]
四、 解决问题
你能用一个数来表示下图阴影部分的面积吗?
分数:
小数: 小数: 小数:
[评析:作业的设计独具匠心,第一题通过用一个带小数来表示阴影部分,消除学生错误地将小数理解成就是小于1的数。第二题通过用0.50元、0.5元来表示5角人民币和用0.200千克、0.20千克和0.2千克来表示200克鸡精,既和前面的教学产生呼应,又为下一节小数性质的学习埋下伏笔。]
五、 总结。
小数的意义教学设计2
一、教学目标
(一)知识与技能
在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
(二)过程与方法
在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
(三)情感态度和价值观
在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
二、教学重难点
教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。
教学难点:理解小数的计数单位及它们间的进率。
三、教学准备
米尺、彩带、磁条。
四、教学过程
(一)创设情境,导入新课
1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度是多少?
2.你们估计得对不对呢?让我们一起用直尺来验证一下。
3.谁愿意把你测量的结果告诉大家?
学生汇报预设:
学生1:我测量课桌面的长度是120厘米。
学生2:我测量课桌面的长度是1米2分米。
教师:课桌的长度如果以米为单位就是1.2米。
(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。
(2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。
【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。
(二)尝试探究,理解意义
1.认识一位小数。
教师:出示1米长的彩条,如果把1米平均分成10份,每份是多长?把1分米改写成
用“米”做单位的分数怎么表示?说一说你是怎么想的?
学生交流想法。
教师总结:米用小数表示就是0.1米。
教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。
学生独立完成,教师巡视。交流分享学生的思考过程。
教师:仔细观察黑板上的每组分数和小数,你发现了什么?
结合学生回答,教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。
练习:用小数怎么表示?呢?0.5怎样用分数表示?
参考答案:0.9,0.6,。
2.认识两位小数。
教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?
1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?
学生先独立完成,再合作交流。
教师:观察每组中的分数和小数,说一说你发现了什么?
学生1:分数的分母都是100。
学生2:小数点的右面都有2个数字。
教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。
【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的小数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。
3.小数的意义。
教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。
学生先独立研究,再汇报交流结果,教师根据学生回答适时板书。
教师:通过你的研究,你发现了什么?
学生1:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的`一份就是1毫米,也就是米,写成小数就是0.001米。
学生2:三位小数就表示千分之几。
教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?
学生预设:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。
教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?
学生:四位小数表示万分之几,五位小数表示十万分之几。
结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?
学生1:我认为分母是10、100、1000、10000等的分数可以用小数来表示。
学生2:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……
学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
4.认识小数的计数单位。
教师:大家都知道分数中,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?
学生交流,教师根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……
【设计意图】引导学生借助对“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,有效地锻炼了学生的多种能力,突破了重难点,同时也渗透了小数中相邻两个计数单位间的进率。
(三)巩固练习,强化认知
1.第33页做一做。
2.第36页练习九第1题。
3.填空:
0.6 里面有6个( );再增加( )个 0.1就等于1。
0.25里面有( )个0.01。
32个0.001是( );32个0.01是( );32个0.1是( )。
4.在括号里填上适当的小数。
学生先独立完成,教师再让学生汇报答案,集体评议。
【设计意图】通过不同层次的练习设计,让学生在对比练习的过程中不断加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用价值,帮助学生根据小数意义理解生活中常见的小数所表示的含义。
(四)总结梳理,拓展延伸
1.今天这节课我们学习了哪些知识?你有什么收获?
2.介绍对小数发展具有杰出贡献的两位数学家。
【设计意图】通过问题帮助学生梳理本课所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。
小数的意义教学设计3
教学目标:
1、理解小数的意义,借助熟悉的十进制关系现实原型,多角度理解小数和分数的联系,知道每相邻两个计数单位之间的进率是10。
2、通过小数和分数的联系,培养学生系统归纳知识的能力。
3、通过对测量、观察、思考、操作等活动,以及学生对日常生活中的小数的广泛应用,使学生积累了丰富的感性认识,渗透迁移、类推思想。
4、通过自学、交流等活动,积累思考的经验和探究的经验。
5、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。
6、引导学生在测量、操作过程中经历“不够1米怎么表示”,感受小数产生的必要性,并尝试着解决生活中的实际问题。通过分层练习,让学生牢固掌握并重点练习小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的'意义,培养迁移和类推的能力。
教学重点:
1、理解小数的意义
2、知道每相邻的两个计数单位之间的进率是10。
教学难点:
小数每相邻两个计数单位间的进率是10。
教学过程:
一、情境引入,揭示课题
同学们,上学期我们初步认识了小数,了解到小数在生活中具有十分广泛的应用,生活中处处有小数,小数也经常出现在日常生活的测量和计算中。你会用米尺测量吗?请两位同学合作到前面测量黑板的长度。引出在测量过程中,往往不能正好得到整数结果,不够1m怎么办?
今天我们一起来探究小数的意义(板书:小数的意义)
二、新授
(一)1、理解一位小数的意义
请看大屏幕(出示课件米尺图)
师:把1米平均分成10份,其中的一份是几分米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?
师:谁来说一说?3分米呢?7分米呢?
通过探究,发现:分母是10的分数可以用一位小数表示。
师:0.3m里面有几个0.1m?
0.7m里面有几个0.1m?1m呢?
小结:分母是10的分数,它的分子是几,里面就有几个0.1。
2、巩固练习(出示课件)
师:请你再思考一下:1里面有几个0.1?为什么?
(二)1、理解两位小数的意义
请看大屏幕(出示课件米尺图)
把1米平均分成100份,其中的一份是几厘米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?谁来说一说?4厘米呢?8厘米呢?
通过探究,发现:分母是100的分数可以用两位小数表示。
0.04m里面有几个0.01m?
0.08m里面有几个0.01m?1m呢?
小结:分母是100的分数,它的分子是几,里面就有几个0.01。
2、巩固练习(出示课件)
(三)1、理解三位小数的意义
请看大屏幕(出示课件米尺图)
把1米平均分成1000份,其中的一份是几毫米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?
谁来说一说?6毫米呢?13毫米呢?你能独立探究吗?
学生看课本33页,独立探究。(课件出示问题引导)
通过探究,发现:分母是1000的分数可以用三位小数表示。
0.006m里面有几个0.001m?
0.013m里面有几个0.001m?1m呢?
小结:分母是1000的分数,它的分子是几,里面就有几个0.001。
(四)迁移推理
同学们看课本33页,在米尺图的下面,小精灵说了一句话,咱们齐读一下。引导学生理解其中省略号的含义。
巩固练习:
1、教材36页 1、2两题
2、课件出示巩固练习
(五)认识小数的计数单位和进率
回忆整数的计数单位,引出小数的计数单位,理解每相邻两个计数单位之间的进率是10。
三、课堂总结:
这节课你有什么收获?
四、介绍小数的历史,拓展视野
五、布置作业:教材37页7、8两题。
小数的意义教学设计4
教学设想:
小数的意义是西师版教材四年级下册的内容。本节内容是学生在三年级下册学习“小数的初步认识”的基础上来学习的,同时小数的意义是学生系统学习小数知识的开始,是学生认数范围的一次扩充,也是对学生日常经验的一个归纳与总结。依据新课程理念,我在本节教学设计中力求让学生结合现实情境,进一步认识小数,充分调动学生的旧知,促进知识的正迁移,同时加强操作活动,引导学生主动获取知识。
教学目标:
1、让学生理解和掌握小数的意义,以及小数的计数单位,理解相邻两个计数单位的进率是十进关系。
2、让学生经历观察、操作、探索等活动,理解小数的意义以及数的计数单位,培养学生动手能力、推理能力和创新意识。
3、让学生感受数学与生活的密切联系,激发学生的求知欲。
教学重难点:
重点:理解一位小数,二位小数的意义。
难点:理解三位小数的意义,同时归纳小数的意义。
教学具准备:
课件、学习卡2张、米尺、皮尺
教学过程:
一、创设情景,引入新知
师:孩子们,北京奥运会的脚步离我们越来越近了,全国各地都在积极迎接奥运的到来,我们学校为了迎接奥运也举办了一场校动会。(课件出示,主题图)
师:你们从这幅图上了解了哪些信息?
生:张兵跳远的成绩是2.36米
生:王志跳高的成绩是0.92米
生:校运会60米的纪录是7.8秒,100M的纪录是13.4秒,跳远的纪录是2.87M,跳高的纪录是1.06M。
生:我知道这些数都是小数。
师:孩子们真聪明,观察真仔细.那么你们想知道为什么会产生小数吗?
生:想
师:现在我想让两位孩子来量一量黑板的'长和宽。
学生上台用皮尺测量。
生:黑板长3米10厘米
生:黑板宽95厘米
师:孩子们黑板的长和宽是不是都是整数呢?
生:不是
师:在测量的计算中,我们有时不能得到整数的结果,通常可以用小数表示。板书:小数
师:孩子们,我们在三年级时都已经初步认识了小数,那么下面这些空我相信大家都能填出来吧!(课件出示)
1角=()10元=()元0.1元是把1元平均分成10份,取其中()份。
1dm=()10米=()m0.1米是把1米平均分成()份,取其中()份
5角=()()元=()元0.5元是把1元平均分成()份,取其中()份
3dm=()()m=()m0.3是把()平均分成()份,取其中()份
(生独立完成,并汇报)
二、探索新知
师:孩子们完成的真不错,来鼓励一下自己。好!现在请大家拿出老师课前发给你们每个小组(二人一组)的学习卡片1,然后听清老师讲要求。(课件出示)
(1)、涂一涂:用斜线把其中十个直条涂出阴影,并用分数、小数表示,再把7个直条涂上阴影,用分数小数表示。
(2)、填一填:
分数()10
分数()10小数()
小数()
(3)、说一说:0.7表示把一个正方形平均分成()份,取其中()份
0.7里面有()个0.1
0.1、0.7都是一位小数,都表示把1个整体平均分成()份,分别取其中的()份,()份。
(4)、讨论:一位小数表示几分之几?几分之几表示一位小数?
(5)、完成后,组内两个同学相互说一说
(学生两人一组合作完成)
师:好!孩子们我看大家完成的差不多了,谁来给大家汇报一下?
生:(上台用视频展示台把学习卡1展示)我们小组是这样涂的
分数110分数710
小数(0.1)小数(0.7)
0.7表示把一个正文形平均分成(10)份,取其中(7)份。0.7里面有(7)个0.1
小数的意义教学设计5
“小数的产生和意义”这一教学内容属于概念教学,概念教学对培养学生的认知能力、观察能力、迁移能力、抽象概括能力等各方面数学素养有一定的促进作用,也是一种思维的挑战,“小数的产生和意义”体验式教学设计思路及反思。现代教学论认为“最有效的学习是学生对学习过程的体验,它能给予学生自主建构知识和情感体验的空间,激发学生的思维。”新课程关注知识与技能、过程与方法、情感态度与价值观的有效整合,我们的课堂上就要关注学生学习过程中的有效体验,提高学生的学习效率。
自学校确立体验式教学课题并在课堂教学中开展体验式教学模式以来,我又进一步反思了自己的教学形式,梳理了自己的教学思路,整合了自己的教学模式,改进了自己的教学特色。将体验式教学新生的元素融进课堂,促进了课堂教学和谐、有效、充实、高效的开展。
以本节教学内容为例,课堂中有两次大的体验活动。一是在实际测量中感知小数的存在,在生活实际中感受小数的产生。二是在长度单位这个现实背景中,感知一位小数、两位小数、三位小数等的存在,并在小数与分数的观察对比中体验小数与分数的联系从而认识小数的意义。我主要来谈谈第二次体验活动。借助米尺,把一米平均分成10份,每一份是1分米,任取其中的一份会是多少呢?学生会在平均分的基础上想到十分之一,并能写作0.1,这些都是学生三年级下学期的学习经验,这里需要学生感受体验的是什么呢?就是让学生感受把一米平均分成10份,取其中的几份用分数表示这些分数有什么特点,用小数表示这些小数又有什么共同的特点,进而联想到分母是10的分数和一位小数有什么联系?这是在多个案例中学生进行的感知体验活动,在学生有了初步感知经验的基础上让学生在小组里说一说自己发现,一是分享成果,二是给予提示,三是达成共识。小组汇报时我会及时给予评价指导最终师生共同对这一学习过程进行总结就是:分母是10的`小数可以写成一位小数。迈出了第一步,学生在后面感受两位小数,三位小数时就会有了一个明确的学习方法,所以在感受两位小数这一环节我会半辅半放让学生先自主感受,再小组交流汇报,这就更加丰富了学生的感性经验,在感受三位小数时,我完全放手让学生自己去感受体验,并脱离小组交流这一拐棍,完全让学生自己形成学习方法,并学有所成。在揭示小数的意义这一神秘面纱时,学生已经积累了一定感性经验,让学生思考“分数和小数有什么联系?”这也是本节课的学习高潮,这一体验活动是学生经验的提升,也是经小组讨论进行简练概括。我认为学到这,学生真正经历了知识的形成过程,学习是有效的。
反思这节概念教学课,我认为保证学生进行有效的体验,首先要清楚学生已有经验和基础,备课时有所预设,创设的问题情境要简约、直观、有针对性、有思考价值,能激起学生“要去感受体验”的冲动。其次,教师及时必要的梳理、评价、反馈学生的思考交流成果,形成共性的知识成果,及时进行学习方法的指导,形成怎样去学的意识。
小数的意义教学设计6
教学目标
1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3.培养良好的学习习惯,提高学生的探究、归纳比较、推理能力。
教学重点理解小数的意义。
教学过程
一、交流信息,引入课题
师:课前布置学生收集一些与小数有关的资料,谁愿意读给大家听听?谈谈你了解到了什么,又想到些什么?
小结:刚才出现的这些数都是小数,它们表示什么意义,应该怎样正确地读和写呢,;今天这节课我们一起来学习。(板书课题:小数的意义和读写方法)
【设计意图:学生的知识起点是三年级时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情】
二、教学例1,初步感知
师:为了便于研究,老师课前也收集了一些与小数有关的材料。
1.出示例1三幅图。图上这些数都是小数,表示物品的价钱。会读吗?如果你到商店去买这些物品,该怎样付钱呢?
生1:0.3元就付3角。
师:很好,你会把元转化成角来考虑。那0.05元和0.48元呢?
生2:0.05元就是5分。
生3:0.48元就是4角8分。
帅:对,也可以说成48分。
2.师:把3角写成用元做单位的分数,是多少呢?
生:3角=3/10元。(一元=10角,1角就是1/10元,3角里面有3个1/10,是3/10元)
师:3角=3/10元,也可以写成0.3元,读作零点三元。(板书)
师:5分、48分也写成用元做单位的分数,你们会吗?同桌先讨论一下,再回答。
生:5分=5/100元,48分=48/100元(1元=100分,每份是1/100元,5分有5个1/100,就是了5/100元;把1元平均分成100份,每份是1/100元,48分就是48/100元(板书:5分=5/100元48分=48/100元)
师:5/100元还可以写成小数0.05元,读作零点零五;48/100元还可以写成小数0.48元,读作零点四八。(继续板书读写)
小结:0.3、0.05、0.48都是小数,0.3的小数部分有位,是一位小数,0.05和0.48小数部分有两位,是两位小数,当然,还有三位小数、四位小数
【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。在初步感知阶段,利用0.3元该怎么付?学生把元转化成角,进而追问3角钱以元为单位用分数表示?得出0.3元=3角3/10元,即0.3=3/10。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。在得出分数之后,告诉学生3/10还可以写成像0.3这样的小数,再教给读法】
三、教学例2,揭示意义
1.师:刚才从1元:100分,我们想到了用分做单位的数都表示1元的百分之几,都能写成小数,在其他情境中也能看到这样的现象。瞧,(课件出示米尺)这是一把米尺,我们截取了一部分。把1米平均分成100份,每份是1厘米。1厘米等于1/100米,还可以写成0.01米。(板书:1厘米=1/100米=0.01米)那么,(出示)4厘米、9厘米写成分数和小数各是多少呢?
学生尝试完成。
师:请位同学来说一说,你是怎么填的?
板书:1厘米=1/100米=0.01米
4厘米=4/100米=0.04米
9厘米=9/100米=0.09米
师小结:请大家仔细观察一下,0.01、0.04和0.09都是两位小数。那前面对应的这排分数有什么共同之处呢?
生:都是分母为100的分数。
师:对,他们都是分母为100的分数。分母是100的分数可以写成两位小数。现在你们知道什么样的分数可以写成两位小数吗?什么样的分数可以写成三位小数呢?
2.我们继续观察刚才那把米尺,把他平均分成1000份,每份是1毫米。(课件出示)1毫米是1米的1/1000,还可以写成0.001米。(板书1厘米=1/1000米=0.001米)那7毫米、15毫米写成用米做单位的分数和小数各是多少?大家试试吧。
板书:1毫米=1/1000面米=0.001米
7毫米=7/1000米=0.007米
9毫米=9/1000米=0.009米
小结:请大家观察这一行分数和对应的小数,你有什么发现?
您现在正在阅读的苏教版《小数的意义和读写方法》教学设计二文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《小数的`意义和读写方法》教学设计二生:分母是1000的分数可以用三位小数表示。
3.总的观察:三位小数是由分母是1000的分数得到的,两位小数由分母是100的分数得到的,那位小数0.3呢?{是由分母是10的分数得到的)谁来说说什么样的分数可以改写成小数呢?
生:分母是10、100、1000的分数可以用小数表示、:(屏搭上出示这句话)
师:我们再从右往左看,0.3表示3/10,0.05表示5/100,0.48表示48/100,0.001表示1/1000,0.004表示4/1000你有什么发现?
生:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师(指着省略号):四位小数呢?(表示万分之几)
【设计意图:数学学习的本质在于数学思维、经过对一位、两位、三位小数意义的具体分析后,教师抓住展示和交流这一时机,通过清晰直观的板书,从左往右又从右往左地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解】
四、练习拓展,巩固提升
(一)说说做做这个练习分4个层次进行。
师:上面每个图形都表示整数1,你会用分数和小数把涂色部分表示出来吗?
7/1033/1009/1000
0.70.330.009
选其中个小数请学生说出表示什么意义。并通过上下对比观察,再次强化:分母是10、100、1000的分数,用小数米表示分别是一位小数、两位小数、三位小数。
2.师:阴影部分是0.7,淮能用小数表示出空白部分?它又表示什么意义?
3.出示空白图形和0.9、0.07、0.52这三个分数,分别动手涂色表示出这三个小数。
4.个人自由在空白图形上涂色,同桌互相考查,分别用小数表示出涂色和空白部分。
【设计意图:在新课结束后,书上安排了练一练,教材的目的在于巩固小数的意义,但如果这样,题目的价值就没能充分发挥出来,将练一练进行适当处理,使书上分散的练习融为一个整体,由浅入深地对一道习题进行充分的挖掘与应用,使题目增值。第一层次是对教材目标的基本达成;第二层次是对习题的进一步开发,渗透辩证统一思想;第三层次培养逆向思维能力;第四个层次由个体智慧到合作交流,对习题实现了更高层次的创造和升华:,采用了让学生画小数这种直观的操作活动,伴随着学生画前的思考和画后的交流,学生对小数意义的理解也就从画出来想出来说出来,逐渐明了】
(二)快速抢答。练一练1、2和书上练习第4题。
(三)我说你写。老帅报几个小数,看谁能又快又好地记下来。
0.390.60.1080.0080.80.80
问座位互相检查一下,写的对不对?
(此时有同学争论:0.8和0.80,是不是老师重复报了个?)
师(故意):大家争论什么?你为什么这样想?
生1:我认为0.8和0.80一样大,所以是重复写了;
师:0.8表示什么:意义?0.80又表示什么意义?
生2:0.8表示十分之八,是把1平均分成100份,取其中8份,00.8表示一百分之八十,是把1平均分成100份,取其中80份。
师指出:0.80很特别,末尾是0,虽然末尾是0,但它表示两位小数,这个。有特殊的意义,我们以后再学习。(为学习小数的基本性质打下伏笔)
(四)纠错能手。家文具店里的商品标价不太规范,请你帮忙把这些标价改成用元作单位的小数。
小刀3角擦皮8分直尺5角9分
(五)开放题:把6毫米用小数表示出来,你有几种方法?
(六)出示姚明照片:认识吗?准来介绍介绍他?他的身高是多少?
生:2米26。(板书2米26)
师:2米26是口头话,用规范的数学语言,应该说成多少米?(2.26米)你的身高是多少米?猜猜老师的身高。(1.63米)这些数跟我们今天所学的小数还有点不同(整数部分不是0)。关于这些小数的知识,我们以后继续学习。
【设计意图:在拓展提升部分,通过多种形式的练习,引导学生从身边的现象入手,不断巩固所学的小数的意义和读写方法。注意细节的处理,0.8和0.08的比较,6毫米的三种表示方法,以及姚明身高2.26米的表述,既引导学生归纳出数学知识,又为后续学习打下铺垫】
小数的意义教学设计7
教学目标
1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3.培养良好的学习习惯,提高学生的探究、归纳比较、推理能力。
教学重点理解小数的意义。
教学过程
一、交流信息,引入课题
师:课前布置学生收集一些与小数有关的资料,谁愿意读给大家听听?谈谈你了解到了什么,又想到些什么?
小结:刚才出现的这些数都是小数,它们表示什么意义,应该怎样正确地读和写呢,;今天这节课我们一起来学习。(板书课题:小数的意义和读写方法)
【设计意图:学生的知识起点是三年级时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情】
二、教学例1
初步感知
师:为了便于研究,老师课前也收集了一些与小数有关的材料。
1.出示例1三幅图。图上这些数都是小数,表示物品的.价钱。会读吗?如果你到商店去买这些物品,该怎样付钱呢?
生1:元就付3角。
师:很好,你会把元转化成角来考虑。那元和元呢?
生2:元就是5分。
生3:元就是4角8分。
帅:对,也可以说成48分。
2.师:把3角写成用元做单位的分数,是多少呢?
生:3角=3/10元。(一元=10角,1角就是1/10元,3角里面有3个1/10,是3/10元)
师:3角=3/10元,也可以写成元,读作零点三元。(板书)
师:5分、48分也写成用元做单位的分数,你们会吗?同桌先讨论一下,再回答。
生:5分=5/100元,48分=48/100元(1元=100分,每份是1/100元,5分有5个1/100,就是了5/100元;把1元平均分成100份,每份是1/100元,48分就是48/100元(板书:5分=5/100元48分=48/100元)
师:5/100元还可以写成小数元,读作零点零五;48/100元还可以写成小数元,读作零点四八。(继续板书读写)
小结:、、都是小数,的小数部分有位,是一位小数,和小数部分有两位,是两位小数,当然,还有三位小数、四位小数
【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。在初步感知阶段,利用元该怎么付?学生把元转化成角,进而追问3角钱以元为单位用分数表示?得出元=3角3/10元,即=3/10。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。在得出分数之后,告诉学生3/10还可以写成像这样的小数,再教给读法】
三、教学例2
揭示意义
1.师:刚才从1元:100分,我们想到了用分做单位的数都表示1元的百分之几,都能写成小数,在其他情境中也能看到这样的现象。瞧,(课件出示米尺)这是一把米尺,我们截取了一部分。把1米平均分成100份,每份是1厘米。1厘米等于1/100米,还可以写成米。(板书:1厘米=1/100米=米)那么,(出示)4厘米、9厘米写成分数和小数各是多少呢?
学生尝试完成。
师:请位同学来说一说,你是怎么填的?
板书:1厘米=1/100米=米
4厘米=4/100米=米
9厘米=9/100米=米
师小结:
请大家仔细观察一下,、和都是两位小数。那前面对应的这排分数有什么共同之处呢?
生:都是分母为100的分数。
师:对,他们都是分母为100的分数。分母是100的分数可以写成两位小数。现在你们知道什么样的分数可以写成两位小数吗?什么样的分数可以写成三位小数呢?
2.我们继续观察刚才那把米尺,把他平均分成1000份,每份是1毫米。(课件出示)1毫米是1米的1/1000,还可以写成米。(板书1厘米=1/1000米=米)那7毫米、15毫米写成用米做单位的分数和小数各是多少?大家试试吧。
板书:1毫米=1/1000面米=米
7毫米=7/1000米=米
9毫米=9/1000米=米
小结:
请大家观察这一行分数和对应的小数,你有什么发现?
生:分母是1000的分数可以用三位小数表示。
3.总的观察:
三位小数是由分母是1000的分数得到的,两位小数由分母是100的分数得到的,那位小数呢?{是由分母是10的分数得到的)谁来说说什么样的分数可以改写成小数呢?
生:分母是10、100、1000的分数可以用小数表示、:(屏搭上出示这句话)
师:我们再从右往左看,表示3/10,表示5/100,表示48/100,表示1/1000,表示4/1000你有什么发现?
生:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师(指着省略号):四位小数呢?(表示万分之几)
【设计意图:数学学习的本质在于数学思维、经过对一位、两位、三位小数意义的具体分析后,教师抓住展示和交流这一时机,通过清晰直观的板书,从左往右又从右往左地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解】
四、练习拓展,巩固提升
(一)说说做做这个练习分4个层次进行。
师:上面每个图形都表示整数1,你会用分数和小数把涂色部分表示出来吗?
7/1033/1009/1000
选其中个小数请学生说出表示什么意义。并通过上下对比观察,再次强化:分母是10、100、1000的分数,用小数米表示分别是一位小数、两位小数、三位小数。
2.师:阴影部分是,淮能用小数表示出空白部分?它又表示什么意义?
3.出示空白图形和、、这三个分数,分别动手涂色表示出这三个小数。
4.个人自由在空白图形上涂色,同桌互相考查,分别用小数表示出涂色和空白部分。
【设计意图:在新课结束后,书上安排了练一练,教材的目的在于巩固小数的意义,但如果这样,题目的价值就没能充分发挥出来,将练一练进行适当处理,使书上分散的练习融为一个整体,由浅入深地对一道习题进行充分的挖掘与应用,使题目增值。
第一层次是对教材目标的基本达成;
第二层次是对习题的进一步开发,渗透辩证统一思想;
第三层次培养逆向思维能力;
第四个层次由个体智慧到合作交流,对习题实现了更高层次的创造和升华:采用了让学生画小数这种直观的操作活动,伴随着学生画前的思考和画后的交流,学生对小数意义的理解也就从画出来想出来说出来,逐渐明了】
(二)快速抢答。练一练1、2和书上练习第4题。
(三)我说你写。老帅报几个小数,看谁能又快又好地记下来。
问座位互相检查一下,写的对不对?
(此时有同学争论:和,是不是老师重复报了个?)
师(故意):大家争论什么?你为什么这样想?
生1:我认为和一样大,所以是重复写了;
师:表示什么:意义?0.80又表示什么意义?
生2:表示十分之八,是把1平均分成100份,取其中8份,表示一百分之八十,是把1平均分成100份,取其中80份。
师指出:很特别,末尾是0,虽然末尾是0,但它表示两位小数,这个。有特殊的意义,我们以后再学习。(为学习小数的基本性质打下伏笔)
(四)纠错能手。家文具店里的商品标价不太规范,请你帮忙把这些标价改成用元作单位的小数。
小刀3角擦皮8分直尺5角9分
(五)开放题:把6毫米用小数表示出来,你有几种方法?
(六)出示姚明照片:认识吗?准来介绍介绍他?他的身高是多少?
生:2米26。(板书2米26)
师:2米26是口头话,用规范的数学语言,应该说成多少米?(米)你的身高是多少米?猜猜老师的身高。(米)这些数跟我们今天所学的小数还有点不同(整数部分不是0)。关于这些小数的知识,我们以后继续学习。
【设计意图:在拓展提升部分,通过多种形式的练习,引导学生从身边的现象入手,不断巩固所学的小数的意义和读写方法。注意细节的处理,和的比较,6毫米的三种表示方法,以及姚明身高米的表述,既引导学生归纳出数学知识,又为后续学习打下铺垫】
小数的意义教学设计8
教学内容:本节课教学内容是新人教版本四年级下册第四单元P32页。
1、教材分析
教学主要内容:
一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.
教材编写特点:
简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。
教学的重点、难点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。
教学关键:
理解一位、两位、三位小数的意义。
基本活动经验:
在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。
二、学情分析
小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
学生学习该内容可能的困难:
教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。
学习方式:
充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。
3、教学目标
知识与技能
1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。
2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。
过程与方法
充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。
情感态度与价值观
培养学生的抽象、概括、归纳的思维能力和应用数学的能力。
4、教学过程
1、已知导入、情境感知
师:(出示教室场景图)同学们看,这个地方熟悉吗?
生:熟悉
师:是哪?
生:我们的教室
师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。
师:我们已经知道黑板的高度是1米(课件出示黑板的高度是1米),你有办法知道课桌和讲台的长度吗?
生:我知道了,讲台的长度、课桌的长度有1米多。
生:我知道讲台的长度跟1米差不多。
生:可以用重叠法
生:可以把黑板的高度那里,对直画一根虚线下来,再看
师:课桌的'长度是1米多,具体多多少呢?你有办法吗?
2、展开,认识一位小数的意义
生:先测量出1米,多余的部分截取下来,再接着去测量。
师:谁还来说说......
生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。
师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)
生:是的。
师:接下来,谁有办法?
生:用多余部分去比,看看1米里面有几个那么长。
生:将1米平均分成10份,再比较。
师:比不出来啊,谁有办法?
生:1个1个去比,看看几个那么长正好是1米。就用除法解决。
师:是这样的吗?(课件演示)
生:是的
师:我们一起来数数
生:1个,2个,3个......正好10个这么长是1米。
(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。
师:那现在知道怎么具体表示了吗?说说我们刚才的思路。
生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。
生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。
生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。
师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。
师:这就是我们这节课要研究的“小数的意义”(板书课题)
师:那你们知道小数0.1的意义了吗?
生:0.1表示的是十分之一。
师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。
生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)
师:那0.3里面有几个0.1呢?表示什么
生:0.3里面有3个0.表示十分之三。
师:还找到了其他的小数吗?
生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1
师:那1米里面有多少个0.1呢?
生:1米里面有10个0.1米
师:10个0.1是1
仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?
生:这些小数都表示十分之几。
生:这些分数的分母都是10,小数都是一位小数
生:分母是10的分数可以写成一起小数
生:10个0.1是1
师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。
我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。
师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?
(出示数轴图)你能在这里找到小数吗?
生:能(学生上台寻找并说明理由。)
师:为什么是这里呢?
生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。
生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......
师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。
师:那你能找到0.8吗?
生:某一个点,某一个范围(指出0.8的具体位置)
师:你是怎么找到0.8的?
生:数8个0.1(10份中数出其中的8份)
生:从1开始往左边数2个0.1(10-2=8)
师:那数轴上还有其他的小数吗?
生:有,学生说小数
师:如果将数轴无限的延长,这样的小数说得完吗?
生:说不完。
师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。
3、推进,认识两位小数的意义
师:课桌的长度已经具体的表示出来了,黑板的高度呢?
生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。
师:遇到了什么问题?
生:测量时,多余的部分不够1米,
生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。
师:那怎么办?
生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。
师:(课件演示)我们发现......
生:我们发现10个紫色部分的长度就是蓝色部分
生:把蓝色部分平均分成10份,紫色部分是其中的1份
生:是1厘米
师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?
生:有100个这样的紫色部分。
师:那就是说:将1米平均分成100份,其中的1份表示的长度就是紫色部分,可以用分数1/100米表示
生:还可以用0.01米表示。
师:对的,1/100米写成小数是0.01米。
师:那红色部分有多少个0.01米蓝色部分呢?
生:1米里面有100个0.01米。1分米里面有10个0.01米
师:那这样的4份呢?可以怎么表示?
生:4/100米,写成小数0.04米
师:请同学们拿出抽屉中的软尺。
师:这根软尺长度是多少?
生:1米、10分米、100厘米、1000毫米。
师:看来长度单位的换算学的很好哦。
操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。
学生汇报
生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。
生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。
生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。
师:(副板书20/100米=0.20米,2/10米=0.2米。)对于这两种表示方式,谁来说说他们的意义?
生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。
生:它们表示的长度是一样的,但是它们表示的意义是不同的。
师:仔细观察这些小数,你又有什么发现呢?
生:这些分数的分母都是100,小数都是两位小数
生:分母是100的分数可以写成两位小数
生:100个0.01是1
师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。
(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)
师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。
4、拓展,认识三位小数、四位小数的意义
师:(出示课件显示1毫米)这是多长?
生:1毫米
师:你是怎么知道的?
生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....
师:1米里面有多少个这样的1毫米呢?
生:1000个(1米里面有1000个1毫米),因为1米=1000毫米
出示课件
师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?
生:1/1000米,0.001米。
师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。
师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?
生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米
生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。
生:1厘米也可以用分数百分之一米表示,用小数0.01表示。
师:也就是说10个0.001等于1个0.01。
师:观察这些小数,你发现了什么
生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。
五、总结及应用
(观察板书可以知道)
分母是10.100.1000......的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......
每相邻两个计数单位之间的进率是( 10 )
生:因为我们刚刚在黑板上标记了
生:进率是100
生:因为我们知道人民币1分钱是0.01元,1角钱是0.1元,10个1分钱等于1角,所以进率是10
生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.
(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)
写出合适的分数和小数
说一说你的收获
生:我知道了“小数的意义”
生:我知道了分母是10.100.1000......这样的分数可以写成小数
生:我知道了小数的计数单位
......
是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。
板书设计
1米 1 计数单位
1/10米=0.1米 十分之一 0.1 一位小数
1/100米=0.01米 百分之一 0.01 两位小数
1/1000米=0.001米 千分之一 0.001 三位小数
1/10000米=0.0001米 万分之一 0.0001 四位小数
五、教学反思
《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。
一、运用多种手段,提高教学实效
本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。
2、情景导入,回到最初
借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。
3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。
许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。
六、案例研讨
《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。
1、回归本质,回到最初
在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。
2、数与型结合,便于学生理解
两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。
3、概念性的教学是否可以全面放开,让学生自己去发现、去总结
既然是教学,肯定会有不完美的地方,概念性质的教学多数都是教师满堂灌的形式。在主张把课堂还给学生的情况下,能否大胆的放手,让学生自己去发现、去找凭找据、去总结、去运用呢?
附:评课老师简介
何琴,小学高级教师,校级骨干教师。20xx年担任教育部“国培计划(20xx)”——中西部地区小学教师置换脱产研修项目培训导师,20xx年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(20xx)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。
小数的意义教学设计9
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重难点:理解小数的意义和小数的计数单位。
教具准备:米尺、课件。
教学过程:
一、回顾导入
1.读一读信息(课件出示)想一想,这样写符合实际吗?
(1)老师的体重是565千克。
(2)小明的身高是145米。
(3)笑笑的数学测验成绩是935分。
2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?
3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。
二、探索新知识
1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?
指名测量,其他同学观看。
2.汇报测量结果。
3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。
4.出示米尺图。
上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?
5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?
十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?
6.出示米尺。
指着板书:有什么新发现?学生汇报。
7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?
让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。
学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。
8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。
小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……
进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。
三、巩固练习
第一层练习:分数小数互化。
第二层练习。
1.填空
(1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。
(2)1里面有( )个0.1和( )个0.01。
(3)0.52是由( )个0.1和( )个0.01组成的。
2.判断:
(1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )
(2)1毫米写成小数是0.01米。 ( )
第三层练习: 猜数游戏。
小明和小红的数各是多少?
四、总结
师生共同回顾本节课内容。
反思:
“小数的产生和意义”人教版课程标准实验教材四年级下册的`内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。
小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。
在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。
引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。
最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。
反思这节课,也有一些地方预设的不够充分:
1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。
2.练习量较大,没有考虑学生实际。
“课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!
小数的意义教学设计10
教学目标
1、进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题。
2、提高学生计算能力和估算能力。
3、培养学生认真计算、自觉检验的好习惯。
教学重点
正确、熟练地计算较复杂的小数乘法。
教学难点
根据小数乘法的意义正确判断积与被乘数的大小关系。
教学过程
一、检查复习
(一)口算
0.9×6
7×0.08
1.87×0
0.3×0.6
0.24×2
1.4×0.3
1.6×5
4×0.25
60×0.5
7.8×1
(二)说出下面各算式表示的意义
2.4×0.8
1.36×4
2.58×0.2
二、指导探索
(一)教学例3 0.056×0.15
1、学生独立计算,指名板演。
2、指名说一说计算过程。
教师提问:乘得的积的小数位数不够时,该怎么办?
3、指导学生验算方法
教师提问:怎样检验小数乘法计算是否正确?
(运算乘法交换律检验;再重新算一遍;检查尾数和积的`小数位数等)
(二)教学例4
一个奶牛场八月份产奶18.5吨。九月份的产量是八月份的2.4倍。九月份产奶多少吨?
1、独立解答、
2、教师提问:
(1)你是根据什么列式的?(一倍数×倍数=几倍数)
(2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)
3、比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?
4、练习:不计算,说明下面各算式中积与被乘数的关系、
10.8×0.9
2.4×1.8
50×0.36
0.48×0.75
讨论:在什么情况下,积小于第一个因数?
在什么情况下,积等于第一个因数?
在什么情况下,积大于第一个因数?
5、小结:当第二个因数比1小时,积比第一个因数(零除外)小;
当第二个因数等于1时,积等于第一个因数(零除外);
当第二个因数比1大时,积比第一个因数(零除外)大;
6、练习:不计算,判断下面各题的结果是否正确、
0.72×0.15=1.08 0.36×1.8=0.648
三、质疑小结
(一)今天你都有什么收获?
(二)对于今天的学习还有什么问题?
教学设计点评
教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。
小数的意义教学设计11
教学目标:
1、结合具体情境,结合实际操作,通过观察、类比等活动使学生理解小数的意义,小数的意义教学设计。
2、在理解小数意义的基础上学会读小数和写小数,并分清与整数读写的区别。
3、经历探索小数意义的过程,了解小数在生活中的广泛应用。
教学重点:结合实际操作,使学生理解小数的意义,学会读写小数
教学难点:经历探索小数意义的过程。
教学准备:
自制课件正方形纸片、正方体模型
教学过程:
一、情景创设
课件播放歌曲《春天在哪里》
师:请大家用最响亮的声音告诉老师,刚才我们听到的歌曲与哪个季节有关?
生:春天。
师:对,春天来了,瞧,(课件展示)花儿绽放了,蝴蝶飞来了,人们也纷纷走到了户外。看,画面上的老太太在读报纸呢,一直蝴蝶从她的身边飞过,它看到了什么呢?
课件出示:1千瓦时的电可以让电动车运行0.84千米。
师:谁来读一读这句话。
生:1千瓦时的电可以让电动车运行0.84千米。
师:0.84是个什么数?
生:小数。
二、合作探究
1、教学小数的读写
师:你还会读其他的小数吗?
课件出示一组小数。指名学生读。如果都读对了给自己适当的鼓励。
教师给予适当的评价,教案《小数的`意义教学设计》。然后分组讨论:小数的读法和整数的读法有什么相同的地方,又有什么不同的地方。
学生讨论后回答汇报。
教师小结:小数点前面的数按照整数的读法去读,小数点后面的按照数字出现的顺序去读。
师:打搅会读小数了,那你会写小数吗?
生:会。
课件出示零点四七四点一三十二点四零五
学生自由写--交流--集体订正。
2、教学小数的意义
师:大家既然都见到过小数,那想一想都是在哪里见到的:
生举例生活中的小数(超市的货架上、小票上、课本上等等)
师:大家都是善于观察、乐于发现的好孩子。那你知道0.1元是什么意思吗?
生:1角。
师:说说你的想法。
生:、、、、、、
师出示正方形的纸,然后让学生图出0.1元。
生操作然后汇报。
师生共同通过课件展示来理解1角=0.1元,然后拓展到2角。
师操作让学生回答表示的是多少元。
师:我还是把1元平均分成10份,你能表示出3角吗?涂一涂。
生操作后汇报
师:你知道0.01元是多少钱?
生:1分。
师:那1元里面有多少个1分呢?
生:100个。
师:也就是说(课件展示0.01元表示把1元平均分成份,取了其中的份,用分数表示。--学生自然而然的填写了答案。
0.03元呢?0.36元呢。
让学生用手中的正方形的纸片进行涂写、汇报。
展示0.25的图片,让学生写小数和分数。
借助课件讲解0.001与分数的关系。让学生写0.025与分数。进一步理解三位小数。
师小结:通过我们刚才的谈话,我们不难看出小数与分数有着密切的联系。其实小数就是表示十分之几、百分之几、千分之几…的数。0.1、0.01、0.001…是小数的计数单位。到这里,这节课我们主要就学习了出示课题"小数的读写及意义",学得怎么样呢,下面我们一起来测验一下。
三、课题达标
(课件)展示题目
采用的方法是学生口答,并要学生说出原因。教师做适当的点评和评价。
四、课堂小结
师:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?
小数的意义教学设计12
教学内容
苏教版五年级上册第28-29页。
教材分析
在一至四年级,“数与代数”领域主要教学整数的知识,学生已经初步掌握了十进制计数法。三年级(下册)曾经教学了一位小数,初步体会了一位小数与十分之几的分数间的联系,这些都是本课基础。本课教材中例1、例2借助常用的元、角、分和米、厘米、毫米单位之间的换算,通过这样的感性认识,初步抽象出小数的意义。本课又是进一步教学小数性质、比较小数大小、改写大数目的基础,因此小数的意义是本单元教学的重点。
学生分析:
这一部分内容学生在三年级初步认识小数时其实已经有了学习的基础。学生有以元为单位的小数表示金额,以米为单位的小数表示长度的经验。如果本节课再把大量的时间放在这一方面,无异于原地转圈。对于五年的学生来讲,有了一定的学习能力,对数字语言、文字语言以及图形符号语言有了一定程度的认识和理解。所以,课前的预习,五年级孩子是可以胜任的。所以教师要充分发挥学生自主探索的能力,让学生自主运用已有的经验理解小数的意义,从而实现感性认识到理性认识的飞跃。
设计意图:
本节课是一次校级教研课,在第一次试教时按照例题教学,逐步去理解小数的意义。实施下来发现,学生思维就局限在这些单位换算中,而对小数意义的理解并不到位。于是备课组老师就讨论对于这样的概念课怎样才能达到高效呢?最后商量一致同意尝试学生先学后教,由学定教的教学方式,将本节课的设计分成三大板块。
(1)前置学习,初步感悟。课前通过引导题,让学生自学例1、例2,在常用的价钱和长度单位换算之间,初步感悟分数与小数的联系。同时通过检测题了解学生是否真正理解它们之间的换算,理解分母是10、100、1000……的分数可以用一位小数、两位小数、三位小数……表示。
(2)课中操作,沟通联系。小数的意义是在分数意义的基础上建立起来的。这符合认知建构的理论观点:学习者对新知识的理解程度与他们内在的认知结构息息相关。布鲁纳说得更清楚:“获得的知识如果没有完整的结构把它们连在一起,那是一种多半会遗忘的知识。”学习一个概念,需要在心理上组织起适当的认知结构,并使之成为个人内部知识网络的一部分。沟通小数与十进分数的内在联系,是引导学生理解小数意义的关键。怎样让学生主动建构小数与十进分数之间的联系?我们借鉴了特级教师朱国荣老师的设计。用一张正方形纸表示整数“1”,让学生根据自己的理解,表示0.1的大小,在此基础上认识0.9、0.2、0.8……从而理解1里面有10个0.1.继续拓展,认识两位小数、三位小数……
(3)分层练习,实质理解。第一,基本练习,对口令;第二,看图写小数;第三,结合数轴找小数。这三组练习题,层层递进,检测学生能否从本质上真正理解小数的意义。
实施过程
一、前置学习,初步感悟。
1.揭题:今天这节课,我们学习新的一单元,一起读一读。在三年级我们已经初步认识了小数。今天我们重点来研究小数的意义。
2.课前大家对今天学习的内容已经进行了预习,小组交流,把你的错误向小组里的同学请教一下。(自学学习材料附后)
3.全班汇报:
第一层次:角改写成元作单位可以用一位小数表示,分改写成元作单位可以用两位小数表示。
第二层次:分米改写成米作单位就是十分之几米,也可以写成一位小数,厘米改写成米作单位就是百分之几米,也可以写成两位小数,毫米写成米作单位就是千分之几米,也可以写成三位小数。
二、课中操作,沟通联系。
1.理解一位小数的意义
(1).刚才我们通过课前研究,初步感知了小数和分数的联系,那你能根据自己的理解说一说0.1的意义是什么吗?
(2).那么老师这里有一张正方形纸,如果把这张正方形的'纸看作1,怎么在这张纸上表示0.1的大小。
拿出正方形纸,分一分,涂一涂表示0.1的大小。
展示交流,看看这些同学的作品,发表你的意见。
那谁能很自信地确定你表示的是正确的?介绍你的想法。还有不一样的吗?
虽然形状不一样,但所表示的都是把一个正方形平均分成10份,涂了其中的一份。
(3).课件演示,这样表示0.1吗?要表示0.1还需要涂出一份。再说一说0.1表示什么意义。
(4).仔细看,你除了看到0.1还看到那个小数?你是怎么看到0.9的?写成分数是什么?0.9和0.1合起来是多少?1里面有几个0.1。
(5).这里你能看到哪2个小数,写成分数是多少。合在一起是几?
(6).把1平均分成十份,我们认识了0.1、0.9、0.2、0.8外还可以表示那些小数。
这些小数都是一位小数,一位小数表示什么意义呢?
把1平均分成10份,表示其中的几份,也就是表示十分之几。
2.理解两位小数的意义
(1).那0.01的意义是什么呢?
(2).如果还是把这张正方形纸看成1,要在这张正方形纸上表示0.01,你准备怎么表示。
把这张正方形纸平均分成100份,涂其中的1份表示0.01。
(3).课件演示,0.01可以表示哪个分数。仔细观察你除了看到0.01,你还能看到那个小数。
0.99写成分数是多少?0.99里有几个0.01。0.01和0.99合在一起是多少。1里有多少个0.01
(4).课件出示,你看到哪2个小数,分数是什么?
0.28和0.72合在一起是多少。
这些小数都是两位小数,两位小数表示什么意义。
把1平均分成100份,取其中的几份,也就是表示百分之几。
3.理解三位小数的意义
(1).照这样看三位小数表示?千分之几。
(2).三位小数最小的是谁?0.001表示什么意义。写成分数是什么?你能写一个最大的三位小数吗?0.999表示什么意义。0.001和0.999合在一起是多少。1里面有多少个0.001。
0.012写成分数是多少?写成小数是多少?
4.拓展四位小数、五位小数
(1).那四位小数表示什么呢?0.0123表示哪个分数。
(2).五位小数表示什么意义?写成小数是什么?
5.概括小数的意义
那什么是小数的意义呢?
引导学生归纳:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
三、分层练习,实质理解。
1.对口令
看来大家对小数的意义都已经基本掌握了,那我们一起来玩一个游戏,看谁学得扎实。
规则:老师出示小数,请你快速说出分数,老师出示分数,请你快速说出小数。
结合有单位的题目,0.80元、厘米、0.006米说一说表示的意义。
2.写小数
刚才我们在一张平面的正方形中找到了小数,看,在这个正方体中,涂色的部分能用哪个小数表示呢?
这个图形又可以用哪个小数表示?如果要表示2.43怎么办?
3.数轴上得小数
看、这是一条数轴,这两个点可以用哪个小数表示。
把数轴延伸,这两个点可以用哪个小数表示。2.35在哪里?从0向左看你还能找到哪些数。
4.通过本节课的学习你有什么收获?
虽然我们感觉掌握的还不错,但是伟大的数学家高斯曾说过“给我最大快乐的,不是已懂得的知识,而是不断的学习。”希望大家课后继续研究小数的其他知识
小数的意义教学设计13
教学内容:
小数的意义
教学目标:
1、理解小数在生活中产生的必要性。
2、经历探索小数意义的过程,了解小数在生活中的广泛应用。
3、在探索交流的学习过程中,体验数学学习的乐趣。
教学重点:两三位小数的意义。
教学难点:探究两三位数小数意义的过程。
教学准备:正方形卡纸
教学过程:
一、测量物体导入,了解小数的产生。
1、同学们,老师手中有一张四边形彩纸,你猜测一下它是什么图形?
2、那只是我们的猜测,怎样才能难我们猜测的结果呢?
生:用对折的方法(真善于思考)
师:还有其他方法吗?
生:测量
师:怎样测量。
生:四边长度是否相等。(用数据说话更有说服力)
师:同学们手中也有一张四边形彩纸,那我们就用刚才这名同学所说的测量四边长度的方法来验证一下它到底是什么图形。拿出尺子开始吧!把测量完的长度分别写在四边的括号里。(培养学生猜测、验证的数学思维)
师:同学们都量好了,谁来汇报一下你验证的结果。
生:是正方形,边长长度都是厘米。
师:是正方形吗?四条边的长度分别是多少厘米?我写在这好吗?
师:有和这名同学数据不同的吗?
师:怎么可能,大家都是正方形,你验证错了吧?
师:你真勇敢,在真理面前,不要向任何人低头。
师:观察这些数据你发现了什么?
生:有整数,也有小数。
师:同学们为什么会用到小数呢?
师:刚才我们在测量图形边长的时候因为长度不是整厘米数,所以我们用到了小数,在生活中还有哪些地方你也运用到了小数呢?
师:你们真是留心生活的孩子,老师这也搜集了一些,谁读给大家听。
课件出示很多情况。引出课题。(数学学习来源于生活实际。)
大家读得都很准确,在三年级我们对小数有了初步的认识,而在这一节课,我们要研究一下小数的意义。板书。
师:我今天也带来了几个小数,请大家注意看。
师:你们猜接下来老师要写哪个小数。
板书:
师:你们是怎么猜到的呢?
二、探究一位小数的意义
1、让我们来看这个小和0.1,它表示什么?
师:刚才我们进行验证的那张正方形纸,我们把它看作是1,那这样的2张呢,10张呢?
师:如果想用这张纸表示出0.1这么大的一块,你估计一下能有多大呢?用手指给大家看。
师:这个0.1到底有多大呢,就用你手中的正方形纸画一画涂一涂表示出0.1那么大小的一块。
生:汇报。
师:现在谁能说说0.1所表示的意义?
生:把正方形平均分成十分,表示其中一份的数就是0.1也就是十分之一。
师:只能是正方形平均分吗?
师:所以0.1也就是十分之一。
师:仔细观察这个正方形,除了0.1你还看到了哪个小数。0.9也就是十分之九。
师:怎么得到的呢?
师:那么0.1和0.9合起来就是多少?
师:看这些小数,你发现了什么呢?
这些一位小数就是表示十分之几。
三、认识两位小数的意义。
1、如果要表示0.01那么大小的一块,你会吗?谁来说说你的想法。
生:把这个正方形平均分成100份。表示其中的一份。
师:你们认为是这样吗,谁再来说一说。
师:(教师演示这样的过程)
师:谁来说说0.01所表示的意义呢?表示百分之一。
师:你还看到了哪个小数呢?百分之九十九。
3、下面请同学们自己在有一百个格子的正方形上涂一涂,自己创造出一个小数来。
师:哪位同学说说你涂了几格,阴影部分用小数表示是多少?
师:你创造的小数是多少,猜猜他涂了多少个格子。那空白部分应该是多少呢?
4、用这一环节引出0.4和0.40。区分意义的不同。
这样的两位小数表示百分之几,在分法上不同,所表示的意义也是不同的。
四、认识三、四位小数的意义。
1、我们认识了一位小数表示十分之几,两位小数表示百分之几,那三位小数呢?四位小数呢?
师:0.001表示千分之一0.234表示千分之二百三十四
师:那千分之31写成小数是多少?
2、我想表示出一个很大的三位小数,你认为应该是多少?
4、它和谁合在一起才会是1呢?
五、巩固应用。
1、把一米长绳子分成10份,分别用小数分数表示其中的4份。
2、解释下面题中小数的意义。
周末天天去一个距家有0.3千米的超市买了一支铅笔用了0.3元,来回路程共用去了0.3小时。
0.3千米=()米0.3元=()角0.3小时=()分
小数的意义教学设计10
一、教学目标
1、理解小数的意义,能够说出小数各部分的名称。
2、正确掌握小数的读、写方法。
3、通过观察、测量体验小数与生活的'关系。
4、在合作与交流中的过程中,感受数学学习的乐趣。
5、体验数学在身边,感受数学学习的价值和乐趣。
二、教学重点和难点
1、认识小数学概念。
2、小数表示形式。
3、理解小数的含义是本课的重点、也是难点。
三、教学过程
一)创设情景,导入新课
创设情景,引导学生交流搜集到的生活中的小数。
教师根据学生回答随机板书:
1、一张桌子的高度是米;
2、教室窗户的宽是米;
3、一份汴梁晚报价格是元
4、每度电的价格是元。
5、一棵包菜的重量是千克。
6、奥运冠军刘翔的身高是米,体重是千克。
问题思考:
为什么在这些地方需要用小数来表示?
引导学生在读一读这些小数,在读的过程之中,如果有错误,教师当即指导。
问题:
1、这些都是小数,你知道关于小数的哪些知识呢?
2、关于小数你还想知道些什么?
3、今天我们就进一步研究小数的意义。(揭示课题)
这样的设计在于把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
二)新授部分
1、米表示什么意义?谁来说说(借助课件,帮助学生理解)
引导学生完整说:刚才我们把1米平均分成10份,每份长1分米,就是1/10米,还可以写成米。谁也来就像这样完整说一说。
师:这就是米的意义。对照板书中的分数和小数,你能发现什么?
学生思考后再交流,十分之几可以写成一位小数,反之,一位小数也可以用十分之几表示。
问题:十分之五等于多少?等于多少?
我们过去三年级所认识的米、米以及米都是表示把一米平均分成10份得到的分数,那么1米还可以平均分成多少份呢?
每份长1厘米,就是1/100米,还可以写成米.
问:谁愿意再来说说米的意义。学生完整地说出:
1米平均分成100份,每份长1厘米,就是1/100米,还可以写成米。
想一想米表示什么?
重点让学生自己来说一说。
观察:对照板书,那么你们又有什么新的发现?
得到:百分之几可以写成两位小数,两位小数表示百分之几。
师:能举些例子吗?现在我们如果将1米平均分成1000份,每份多长?用分数、小数如何表示?
你又能发现什么呢?(得到:千分之几可以写成三位小数)请再举例。
师:如果将1米平均分成份呢?能再举例吗?
接着学习下面的几个小数:元、元、千克
把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣。
归纳:刚才我们分的是1米、1元、1千克等,都可以用整数“1”来表示,我们把整数1平均分成10份100份1000份、……这样的一份或几份是十分之几、百分之几、千分之几……还可以写成一位小数、两位小数、三位小数。
三)练习加强理解
1、读小数:元米千米千克
2、1厘米=()/()分米5角=()元
3、王新买了三本书,价钱分别是9角8分、7角、3元2角。如何表示
四)教学反思
1、认识小数是小学阶段教学小数的知识,教学过程中引导学生与实际生活中量长度、买东西等具体事件联系起来,引导学生结合生活经验学习小数的内容。
2、本节课教学包括一位小数的意义、读写方法,是后继学习比较小数大小和小数加减计算的思考基础。学生在日常生活中大量的接触小数,小数的读和写并不是孩子的难点,让学生借助生活实际去理解小数的意义才是学生的学习的关键。
3、在教学过程中,考虑到学生已有的生活经验,用元、角引入降低学生理解的难度。让学生感受生活中处处有数学,领会到数学源于生活、用于生活的思想。
4、在教学中,教师应该有感染力的教学语言,让课堂气氛充分活跃起来,这方面有待于今后教学中加强。
5、学生对小数意义的认识需要经过一个循序渐进的过程,在教学中,应该对教学内容可以进行适度的重组和补充。
小数的意义教学设计14
小数的意义
第一课时
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。
教学目标:
1让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。
2通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义。
4感受数学与生活的紧密联系,体会小数在日常生活中的作用。
教学重点:
结合现实情境,认识小数及小数的计数单位。
教学难点:
理解小数的意义及十进关系。
教学准备:
米尺、直尺等。
教学过程:
一、引入新知
1量一量黑板的'长,课桌长、高
这些数是不是都是整米数?
教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。
2回忆、练习
1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m
教师:关于小数,同学们还想知道什么?
板书课题:小数的意义
二、探索新知
1教学例1
(1)填一填,说一说。
(出示例1第1个图)
①此图用分数、小数该怎样表示?你是怎样想的?
说一说:07表示把一个正方形平均分成()份,取其中()份。
07里面有()个0.1。
②像0.1,0.3,0.5,0.7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。
(2)同理说一说。(后面两幅图)
①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?
②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?
2教学例2
(认识三位小数)
(1)看一看,填一填。
①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。
(出示图)学生填分数和用小数表示。
1mm=()1000m=()m;146mm=()1000m=()m②把一个正方体平均分成1000份。
(第70页例2图)其中1份、25份,107份用分数和小数怎样表示?
(2)说一说0.025,0.107分别表示什么以及它们的组成。
(3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?
3讨论、归纳小数的意义
学生讨论:什么是小数?小数的计数单位有哪些?
归纳:像0.7,0.45,0.025,0.25,0.107……这样表示十分之几、百分之几、千分之几……的数叫小数。0.1,0.01,0.001……就是小数的计数单位。每相邻两个计数单位间的进率是“10”。
学生自学数位顺序表。
三、课堂活动
完成课堂活动第1,3,4题。
先学生独立完成,集体评议,让学生说说是怎样想的?
四、课堂小结
本节课学会了什么?还有什么困难?
板书设计:
小数的意义
一位小数表示十分之几。
两位小数表示百分之几。
三位小数表示千分之几。
每相邻两个计数单位间的进率是“10”。
0.1,0.01,0.001……就是小数的计数单位。
小数的意义教学设计15
教学内容:
人教版义务教育课程标准实验教科书数学四年级下册第50-51页。
教学目标:
1、理解小数的产生和意义,认识小数的计数单位及进率。
2、通过抽象概括,培养学生初步的逻辑思维能力。
3、结合教材和教学,有机渗透“实践第一”与“事物之间是普遍联系”的辩证唯物主义观点的启蒙教育。
教学重、难点:
教学重点:概括小数的意义,认识其计数单位和进率。
教学难点:理解小数的意义,掌握分数单位与小数单位之间的关系。
课前准备:请学生测量自己周围的物体,如课桌、黑板、门窗、大幅挂图等的长与宽(或高),整理收集好数据。
教学过程:
一、导入
1、我们数学课本的定价是多少元?(板书:5.10元)小明的身高是1.21米,小兰的体重是38.2千克(板书:1.21米、38.2千克)。你们知道这些都叫什么数吗?我们在哪册课本中学过?小数是怎样产生的?
2.请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读课本内容。
3.师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书:小数的产生)但是,小数的意义又是什么呢?这节课,我们就来着重研究它。
二、新授
1、3分米是怎样写成小数0.3米的呢?同学们请看(出示一把米尺),这把米尺的总长是1米,把它平均分成10份。每份是多少?1分米是几分之几米?把1/10米写成小数是多少米?小数点右边有几位小数?左边的数位上写什么?(板书:0.1米)
那么,3分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(板书:3/10米、0.3米)7分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(最后让学生把测量实物得到的数据也写成以米为单位的小数,同桌互相检查评改)
归纳小结:把分米数写成以米为单位的数,得到的是十分之一或十分之几米的数,可用一位小数来表示。(板书:一位小数)
2、把1米平均分成100份,每份就是1小格,这1小格是多少?写成分数是几分之几米?把它写成小数是多少米?小数点右边有几位小数?左边写什么?(板书:1厘米、1/100米、0.01米)
启发学生类推:谁能说出3厘米、6厘米各用分数和小数来表示是多少米?(同时让学生在书上的括号里写出来,并指名一生板演填空)各有几位小数?3和6写在小数点右边的哪位上?(再让学生把测量实物得到的数据写成以米为单位的小数,同桌互相检查评改)
归纳小结:把厘米数写成以米为单位的数,得到的是百分之一或百分之几米的数,有几位小数?(板书:两位小数)
3、把1米平均分成1000份,每份是多少?(板书:1毫米)(用投影仪显示1厘米中的“毫米”小格)这1毫米是几分之几米?怎样写成小数?小数点右边有几位小数?(指名一生板演填写,其他学生写在练习本上)6毫米、13毫米怎样写成分数和小数?小数点右边的第一、第二、第三位上。各表示几个1/1000米呢?
引导小结:把毫米数写成以米为单位的数,得到的是怎样的分数?能写成几位小数呢?(板书:三位小数)
(布置学生将收集到几分米、几厘米、几毫米的数写成以米为单位的小数,然后互相检查评改)
4、如果继续分下去,得到1/10000、1/100000……的数。能写成几位小数?你会写吗?试一试,再互相检查。
5、归纳概括。用投影仪显示下列问题。
在上面的例子中,这些分数都能直接写成小数,这些分数的分母分别是多少?
表示十分之几、百分之几、千分之几……的分数,它的分数单位各是多少?每相邻两个计数单位间的进率是多少?(如:1/10里面有多少个1/100?)与整数的进率有什么联系和区别?
像这种分母是10、100、1000……且相邻的计数单位的进率是10的分数,可以怎样依照整数的写法写成小数?
因为整数左边数位上的数是右边相邻数位上的数的10倍,所以小数数位也可以从左到右由高位到低位排列,在整数与小数部分之间用小圆点(小数点)隔开来。
小数的 计数单位有哪些?同分数单位有什么联系与区别?(引导学生对照板书内容想一想、比一比、议一议,然后回答)
6、让学生阅读课本上有关的内容后,完成课本上“做一做”的练习,最后让同桌学生互相说说:自己测量得到的数据是怎样写成小数的?
三、全课总结、质疑
四、巩固练习
1、口答:在5/10、1/2、1/100、1/15、1/80等数中,哪些分数能直接写成小数?为什么?写成的小数是多少?
2、口答:判断对错,错的要订正。
(1)11/1000写成小数是0.011米。
(2)0.18是18个0.1。
(3)0.33的计数单位是百分之一。
(4)0.57表示百分之五十七。
3、抢答。(看到小数答相等的分数,看到分数答相等的小数)
0.5 16/100 0.25 4/1000 0.075
4、书面作业。(略)
5、机动题:在下面的○里填上“>”、“<”或“=”。
8/10○0.08 96/100○0.95
4角○0.4元
6、思考题:113毫米、15厘米用小数表示出来是多少米?
[评析:小数的意义是本节课的教学重点,由于小学生的.年龄和认知特点,对于小数的意义无论在表述上,还是在理解上都有一定的困难。在设计教学过程时,本课有如下特点:
1、充分感知,使学生明确小数的产生源于实践。
认知规律告诉我们,要使学生形成表象,加强感知是必不可少的。教学中,教师首先从贴近学生生活实际的身高、体重、书本价格的表示中。引出了小数在实际生活中有着广泛的应用,使学生明白小数的产生源于生活实践,激发了学生学习小数的兴趣和强烈的求知欲望。接着又通过测量门窗、黑板、课桌、大幅挂图等实物的长度和宽度的实际操作活动,使学生明白不能得到整米数的结果,这时也常用小数来表示。通过操作感知,使学生明确由于日常生活、生产的需要,从而产生了小数,渗透了“实践第一”的辩证唯物主义观点的启蒙教育。
2、凭借表象。展开联想推理。
建立表象后,以表象为依托,通过观察米尺,联系 旧知,结合采集的数据有层次地展开联想推理。教师引导学生通过回忆、复习,把分米数、厘米数改写成用分数形式表示的米数,再改写成小数表示的米数。从而说明十分之几的数用一位小数表示,百分之几的数用两位小数表示。把毫米数改写成米数时,通过知识迁移,引导学生写出三位小数,并类推出千分之几的数用三位小数表示。在教学中,通过“观察分析实例一联想类推一结论”的过程,找到了分数(特定分母)与小数在数位、定义、进率等方面的实质性联系,为小数意义的抽象概括作了充分的铺垫。这样,学生不但学得轻松,而且培养了学生分析、联想类推的能力。
3、培养学生抽象概括的能力。建立新的认知结构。
教师不失时机地充分利用教材,引导学生通过“想、议、比、读”等方法,抽象概括出小数的意义。在这个过程中,教师主要抓住三点:
(1)抓住位数的扩展规律这根主线,界定能仿照整数写法的特定分数的范围;
(2)通过小数的特征,建立抽象的概念——小数的意义;
(3)联想、分析、概括小数的意义。在学生有了充分的感性认识的基础上,通过自学课本及教师的启发。逐步理解小数意义的各个要素。
然后教师设疑:
(1)能直接写成小数的分数,它的分母是多少?
(2)表示其中一份的分数各是多少?相邻两个计数单位间的进率是多少?为什么?与整数相邻的计数单位间的进率有什么联系和区别?
(3)像这种分母是10、100、1000……的分数。可以怎样依照整数的写法写成小数?
(4)小数的计数单位有哪些?让学生借助教材分析讨论,使学生在回顾知识的同时。加深对知识的理解。学生对小数的意义有了潜在的理解后,教师及时地引导学生抽象概括,使学生学习小数的意义有一完整、清楚的认识,能够较完整地表达出小数的意义。形成新的认知结构。
4、把握训练内容,巩固强化新知。
练习不仅是内化和巩固对知识的理解。而且是形成基本技能与发展智力的重要手段。本节课紧紧围绕小数的意义和小数的计数单位两方面,设计多层次的练习。在练习中注意思维步骤的物化,按照“一看、二比、三写、四查”的步骤思考和运 作,从而有效地培养了学生良好的学习习惯。
同时,多媒体动态直观的演示、正确新颖多渠道的反馈形式、风趣生动的教学语言以及简洁科学的板书设计,牢牢吸引了学生的注意力,使教学目标顺利达成。
【小数的意义教学设计】相关文章:
《小数的意义》教学设计07-28
小数的意义教学设计02-27
小数的意义教学设计12-11
《小数的意义》教学设计15篇12-14
小数的意义教学设计15篇12-13
小数的意义教学设计(15篇)02-07
小数的意义教学设计27篇03-02
《小数的意义》教学反思02-24
小数的意义的教学反思02-21