当前位置:9136范文网>教育范文>教学设计>数学全等三角形教学设计

数学全等三角形教学设计

时间:2024-10-17 11:53:48 教学设计 我要投稿
  • 相关推荐

数学全等三角形教学设计

  作为一名教职工,时常需要准备好教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写呢?以下是小编帮大家整理的数学全等三角形教学设计,希望能够帮助到大家。

数学全等三角形教学设计

  数学全等三角形教学设计 篇1

  教学目标

  一、知识与技能

  1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

  2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

  二、过程与方法

  通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

  三、情感态度与价值观

  通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

  教学重点

  1、全等三角形的性质。

  2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

  教学难点

  正确寻找全等三角形的对应元素

  难点突破

  通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

  课前准备:

  课件、三角形纸片

  教学过程

  一、出示学习目标

  1、知道什么是全等形、全等三角形及全等三角形的对应元素。

  2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。

  二、直观感知,导入新课

  教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知

  1、全等形。

  我们给这样的图形起个名称————全等形。[板书:全等形]

  教师让学生们想生活中还有那些图形是全等形。

  2、全等三角形及相关对应元素的定义。

  教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

  3、全等三角形的对应元素及表示。

  把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

  归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

  以多媒体上的图形为例,全等三角形中的对应元素

  (1)对应的顶点(三个)———重合的顶点

  (2)对应边(三条)———重合的边

  (3)对应角(三个)———重合的角

  归纳:方法一———全等三角形对应角所对的边是对应边,两个对应角所夹的.边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

  另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

  用符号表示全等三角形

  抽学生表示图一、图二、三的全等三角形。

  全等三角形的性质

  思考:全等三角形的对应边、对应角有什么关系?为什么?

  归纳:全等三角形的对应边相等、对应角相等。

  小组活动合作升华

  学生分小组动手操作摆图形

  小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。

  三、巩固练习

  四、教师用多媒体展示习题,学生做巩固练习。

  五、小结:本节课都学到了什么

  六、作业:

  必做题课本33页习题第1题、2题。

  选做题课本第34页第6题。

  数学全等三角形教学设计 篇2

  一、教学目标

  【知识与技能】

  掌握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的推理证明问题。

  【过程与方法】

  经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

  【情感、态度与价值观】

  在探索归纳论证的过程中,体会数学的`严谨性,体验成功的快乐。

  二、教学重难点

  【教学重点】

  “角角边”三角形全等的探究。

  【教学难点】

  将三角形“角边角”全等条件转化成“角角边”全等条件。

  三、教学过程

  (一)引入新课

  利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)

  (四)小结作业

  提问:今天有什么收获?还有什么疑问?

  课后作业:书后相关练习题。

  数学全等三角形教学设计 篇3

  教学目标

  1、知道什么是全等形、全等三角形及全等三角形的对应元素。

  2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。

  3、能熟练找出两个全等三角形的对应角、对应边。

  教学重点

  全等三角形的性质。

  教学难点

  找全等三角形的对应边、对应角。

  教学过程

  一、提出问题,创设情境

  1、问题:你能发现这两个三角形有什么美妙的关系吗?

  这两个三角形是完全重合的。

  2、学生自己动手(同桌两名同学配合)

  取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。

  3、获取概念

  让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。

  形状与大小都完全相同的两个图形就是全等形。

  要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同。

  概括全等形的准确定义:能够完全重合的两个图形叫做全等形。请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义。仔细阅读课本中"全等"符号表示的要求。

  二、导入新课

  将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED。

  议一议:各图中的两个三角形全等吗?

  不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED。

  (注意强调书写时对应顶点字母写在对应的位置上)

  启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略。

  观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  得到全等三角形的性质:全等三角形的对应边相等。全等三角形的对应角相等。

  [例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角。

  问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

  将△OCA翻折可以使△OCA与△OBD重合。因为C和B、A和D是对应顶点,所以C和B重合,A和D重合。

  ∠C=∠B;∠A=∠D;∠AOC=∠DOB。AC=DB;OA=OD;OC=OB。

  总结:两个全等的三角形经过一定的转换可以重合。一般是平移、翻转、旋转的方法。

  [例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角。

  分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来。

  根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的'对应元素。常用方法有:

  (1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边。

  (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角。

  解:对应角为∠BAE和∠CAD。

  对应边为AB与AC、AE与AD、BE与CD。

  [例3]已知如图△ABC≌△ADE,试找出对应边、对应角。(由学生讨论完成)

  借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边。而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了。再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角。所以说对应边为AB与AD、AC与AE、BC与DE。对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED。

  做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合。这时就可找到对应边为:AB与AD、AC与AE、BC与DE。对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED。

  三、课堂练习

  课本练习1。

  四、课时小结

  通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素。这也是这节课大家要重点掌握的

  找对应元素的常用方法有两种:

  (一)从运动角度看

  1、翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素。

  2、旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素。

  3、平移法:沿某一方向推移使两三角形重合来找对应元素。

  (二)根据位置元素来推理

  1、全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边。

  2、全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角。

  五、作业

  课本习题1

  课后作业:《新课堂》

【数学全等三角形教学设计】相关文章:

数学《全等三角形性质》教学反思07-27

数学全等三角形教案12-30

《全等三角形》的教学反思05-15

《三角形全等的复习》教学反思09-17

全等三角形教案09-13

全等三角形教案10-25

全等三角形教案优秀11-21

三角形全等的判定教案12-28

全等三角形判定教案01-24

三角形的内角和数学教学设计09-28