当前位置:9136范文网>教育范文>教学设计>多边形的内角和教学设计

多边形的内角和教学设计

时间:2022-02-18 08:13:29 教学设计 我要投稿
  • 相关推荐

多边形的内角和教学设计

  作为一名老师,时常需要用到教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。我们该怎么去写教学设计呢?以下是小编精心整理的多边形的内角和教学设计,希望对大家有所帮助。

多边形的内角和教学设计

多边形的内角和教学设计1

  [教学目标]

  知识与技能:

  1.会用多边形公式进行计算。

  2.理解多边形外角和公式。

  过程与方法:

  经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.

  情感态度与价值观:

  让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

  [教学重点、难点与关键]

  教学重点:多边形的内角和.的应用.

  教学难点:探索多边形的内角和与外角和公式过程.

  教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决.

  [教学方法]

  本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

  [教学过程:]

  (一)探索多边形的内角和

  活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

  活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?

  多边形边数分成三角形的个数图形

  内角和计算规律

  三角形31180°(3-2)·180°

  四边形4

  五边形5

  六边形6

  七边形7

  。。。。。。

  n边形n

  活动3:把一个五边形分成几个三角形,还有其他的分法吗?

  总结多边形的内角和公式

  一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

  巩固练习:看谁求得又快又准!(抢答)

  例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?

  (点评:四边形的一组对角互补,另一组对角也互补。)

  (二)探索多边形的外角和

  活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?

  分析:(1)任何一个外角同于他相邻的内角有什系?

  (2)五边形的五个外角加上与他们相邻的`内角所得总和是多少?

  (3)上述总和与五边形的内角和、外角和有什么关系?

  解:五边形的外角和=______________-五边形的内角和

  活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?

  也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。

  结论:多边形的外角和=___________。

  练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。

  练习2:正五边形的每一个外角等于________,每一个内角等于_______。

  练习3.已知一个多边形,它的内角和等于外角和,它是几边形?

  (三)小结:本节课你有哪些收获?

  (四)作业:

  课本P84:习题7.3的2、6题

  附知识拓展—平面镶嵌

  (五)随堂练习(练一练)

  1、n边形的内角和等于__________,九边形的内角和等于___________。

  2、一个多边形当边数增加1时,它的内角和增加()。

  3、已知多边形的每个内角都等于150°,求这个多边形的边数?

  4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()

  A:360°B:540°C:720°D:900°

  5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?

多边形的内角和教学设计2

  教学过程

  (一)创设问题情境,引出新课。

  1、以疑导入,引发求知欲。先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。

  引题:我们学校要准备建造一个各边长为5米,各内角都相等的十二边形花坛。问各角是多少度?

  2、复习提问,知识巩固。

  ⑴三角形内角和等于多少度?

  ⑵四边形内角和定理以及推导方法。

  3、引入新课

  上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。

  (二)引导探索,研讨新知

  1、以动激趣,浅探求知。

  一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。

  二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。

  三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。

  2、观察联想,启迪思维。

  (三)回顾小结,验收成效

  1、已知边数如何求内角和;

  2、已知内角和如何求边数;

  3、n边形的.内角和与外角和成一定的比例关系,求其n边形的边数。

  (四)课后作业(教材P91习题7.3第8、9题)

多边形的内角和教学设计3

  学情分析:

  学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

  教学目标:

  1、知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

  2、过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

  3、情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

  教学重点:

  多边形的内角和公式。

  教学难点:

  探索多边形的内角和定理的推导

  教学过程:

  一、创设情境,导入新课

  1、请看:我身后的建筑物是什么?─水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)

  这节课咱们一起来探究《多边形的内角和》。

  二、合作交流,探究新知

  1、多边形的内角和

  问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?

  预设回答:三角形的内角和360°。四边形的内角和360°

  知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”

  【教学说明】“解放学生的手,解放学生的.大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决、

  2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?

  预设回答:能,可以引对角线,将多边形分成几个三角形。

  让学生合作交流讨论,展示探究成果。教材第35页“探究”

  示图,取多边形上任意一个顶点,连接除相邻的两点,则多边形的内角和可转化为三角形内角和之间的关系,

  多边形边数可分成三角形的个数多边形的内角和56 7┅┅┅┅n边形n

  n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?

  预设回答:有n个内角,可以转化多个三角形来求,n边形可以引n-3条对角线,即有n-2个三角形。所有n边形的内角和等于(n-2)x180°

  【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法、

  例:教材第36页例1

  【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用、

  三、课堂演练

  1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()

  A、十三边形B、十二边形

  C、十一边形D、十边形

  2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。

  【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程、对需要帮助的学生及时点拨并加以强化、在完成上述题目后,让学生完成练习册中本课时的对应训练部分、

  四、课时小结

  1、这节课你有什么新的收获?

  五、布置作业

  教材第36页练习1、2题。

  六、板书设计多边形的内角和n边形内角和等于(n-2)×180°。

  多边形的内角和是180的倍数;

  边数越多,内角和就越大;

  每增加一条边,内角和就增加180度。

【多边形的内角和教学设计】相关文章:

多边形的内角和与外角和教学反思(通用3篇)01-09

多边形内角和的数学教案11-30

三角形内角和教学设计01-10

《三角形的内角和》教学设计09-02

《三角形的内角和》教学反思03-03

三角形的内角和教学反思12-02

三角形的内角和教学反思优秀03-03

三角形的内角和数学教学设计02-05

《三角形的内角和》教学反思(15篇)03-11