- 勾股定理说课稿 推荐度:
- 勾股定理说课稿 推荐度:
- 相关推荐
勾股定理说课稿锦集9篇
作为一位优秀的人民教师,通常会被要求编写说课稿,借助说课稿可以让教学工作更科学化。怎样写说课稿才更能起到其作用呢?下面是小编精心整理的勾股定理说课稿9篇,仅供参考,大家一起来看看吧。
勾股定理说课稿 篇1
说教材
本课时是北师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下:
1。知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。
2。过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。 3。情感与态度目标:感受数学在生活中的应用,感受数学定理的美。 教学重点:勾股定理的应用。 教学难点:勾股定理的正确使用。 教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
说教法和学法
1。以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2。切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3。通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
教学程序
本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 一。回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的`应用。 二。新授课例1。如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14。2。1)
①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短? ②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗? ③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?
思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2。(课本P58图14。2。3) 思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0。8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出CD= = =0。6,CH=0。6+2。3=2。9>2。5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。 三。课堂小练 1。课本P58练习第1,2题。 2。探究: 一门框的尺寸如图所示,一块长3米,宽2。2米的薄木板是否能从门框内通过?为什么?
四。小结直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。
勾股定理说课稿 篇2
一、教材分析:
(一)教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析
教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程
我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风
给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相
勾股定理的探索过程是本节课的.重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面"勾三股四弦五"的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示"割"的方法,"补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
第三步推陈出新借古鼎新
教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。
第四步取其精华古为今用
我按照"理解—掌握—运用"的梯度设计了如下三组习题。
(1)对应难点,巩固所学。
(2)考查重点,深化新知。
(3)解决问题,感受应用。
第五步温故反思任务后延
在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
勾股定理说课稿 篇3
尊敬的各位领导、各位老师,大家好:
我叫李朝红,是第十四中学的一名教师。我今天说课的题目《勾股定理的逆定理》,选自人教课标实验版教科书数学八年级下册第十八章第二节,本节课共分两个课时,我今天分析的是第一个课时,下面我将从教材、教法学法、教学过程、教学反思四个方面进行阐述。
一、教材分析
1、教材的地位和作用:
在学习本节课之前学生已经学习了勾股定理,全等三角形的判定等相关知识,为本节课的学习打好了基础,学习好本节课不但可以巩固学生已有的知识,而且为后面利用勾股定理的逆定理判断一个三角形是否直角三角形等相关知识的学习做好了铺垫。
2、教学目标
教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标
知识与技能:掌握勾股定理的逆定理,会用勾股定理的逆定理判断一个三角形是否直角三角形。
过程与方法:通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成
过程,体会数形结合和由特殊到一般的数学思想,进一步提高学生分析问题、解决问题的能力。
情感、态度、价值观:在探究勾股定理的逆定理的活动中,渗透与他人交流、合作的意识和探究精神.
3、重点难点
本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点
重点:理解并掌握勾股定理的逆定理,并会应用。
难点:理解勾股定理的逆定理的推导。
二、教法学法分析
八年级学生的特点是思维比较活跃,喜欢发表自己的见解,善于进行小组合作学习,所以我将采用启发教学与诱导教学相结合的方法,老师为主导,学生为主体,充分调动学生的学习积极性,让学生动手操作,动脑思考,动口表达,积极参与到本节课的教学过程中来,在锻炼学生思考、观察、实践能力的同时,使其科学文化修养与思想道德修养进一步提升。
教法学法分析完毕,我再来分析一下教学过程,这是我本次说课的重点。
三、教学过程分析:
(一)创设情景,引入新课
1、展示图片:古埃及人制作直角的方法
2、让学生试一试用一根绳子确定直角
设计意图:通过古埃及人制作直角的方法,提出让学生动手操作,进而使学生产生好奇心:“这样就能确定直角吗”,激发学生的求知欲,点燃其学习的激情,充分调动学生的学习积极性 ,同时也使学生感受到几何来源于生活,服务于生活的道理,体会数学的价值。
(二)动手检测,提出假设
在本环节中通过情境中的问题,引导学生分别用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm
上面三组线段为边画出三角形,猜测验证出其形状。
再引导启发诱导学生从上面的活动中归纳思考:如果一个三角形的三边a,b,c满足a2+b2=c2,那这个三角形是直角三角形吗?在整个过程的活动中,尽量给学生足够的时间和空间,以平等身份参与到学生活动中来,对其实践活动予以指导。让学生通过作图、测量等实践活动,给出合理的假设与猜测。整个环节通过设置的问题串,引导学生动手、动脑、动口相结合,激活学生的思维,培养学生严谨的科学态度,合理的推测能力,严密的逻辑思维能力和灵活的动手实践能力。
(三) 探索归纳,证明假设:
勾股定理逆定理的证明与以往不同,需要构造直角三角形才能完成,如何构造直角三角形就成为解决问题的关键。如果直接将问题抛给学生证明,他们定会无从下手,所以为了解决这一问题,突破这个难点,我先
1、 让学生画了一个三边长度为3cm,4cm,5cm的三角形和一个以3cm,4cm为直角边的直角三角形,剪下其中的直角三角形放在另一个三角形上看出现了什么情况?并请学生简单说明理由。通过操作验证两三角形全等,从而显示了符合条件的三角形是直角三角形,
2、 然后在黑板上画一个三边长为a、b、c,且满足 a2+b2=c2的△ABC,与一个以a、b为直角边的直角三角形,让学生观察它们之间有什么联系呢?你们又是如何想的?试说明理由。通过推理证明得出勾股定理的逆定理。
在这个过程中,首先让学生从特殊的实例中动手操作到证明,学生自然地联想到了全等三角形的判定,进而由特殊到一般发现三边长为a、b、c,且满足 a2+b2=c2的'△ABC与以a、b为直角边的直角三角形的关系。
设计意图:让学生从特殊的实例动手到证明,进而由特殊到一般,顺利地利用构建法证明了勾股定理的逆定理,整个过程自然、无神秘感,实现从直观印象向抽象思维的转化,同时学生亲身体会了“操作——观察——猜测——探索——论证”的过程,体验了“特殊到一般,个性到共性”的伟大数学思想在实际中的应用。
这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
(四)学以致用、巩固提升
本着由浅入深的原则,安排了三个题。第一题比较简单,判断由a,b,c组成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.让学生仿照课本上的例题,独立完成,教师提醒书写格式。并说明像15,8,17能够成为直角三角形的三条边长的正整数,我们称为勾股数。第二题我改变题的形式,把一些符合a+b=c的三角形放入网格中让学生运用勾股定理及其逆定理来说明理由。第三题是求一个不规则四边形的面积,让学生思考如何添加辅助线,把它分成一个直角三角形和一个非直角但能判定是直角的三角形,让学生运用勾股定理及其逆定理证明并求解。
设计意图:采用启发教学与诱导教学方法相结合的方法分层练习,由浅入深地逐步提高学生解决实际问题的能力,达到巩固知识,学以致用的目的
(五)回顾总结,强化认知
课堂小结以填空体的形式检测、归纳总结
设计意图:让学生以填空题的形式进行总结,不仅能够起到检测的目的,而且帮助学生理清知识脉络,起到重点强调,产生高度重视的效果。
(六)作业布置
教材33页练习
设计意图:加强学生对勾股定理逆定理的理解,使学生的练习范围拓展到多个题型。
教学反思:本节课以学生为主体、教师为主导,通过启发与诱导,使学生动手操作、动脑思考、动口表达,让学生在实践与探究中发挥自我,充分调动了学生的自主性与积极性,整个过程注重了学生课上知识的形成与巩固,以及学生各方面素质的培养。总之本节课的知识目标基本达成,能力目标基本实现,情感目标基本落实。
以上是我对本节课的理解,还望各位老师指正。
勾股定理说课稿 篇4
课题:勾股定理
内容:教材分析、教法学法分析、教学过程设计、设计说明
一、 教材分析
(一)教材所处的地位
这节课是华师大九年制义务教育课程标准实验教科书八年级总第19章第2节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析
教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、 教学过程设计
(一)数学史导入
以毕达哥拉斯发现勾股定理引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
(二)实验操作
1、投影课本图的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的`平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。
3、给出一个边长单位为5,12,13,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
(三)归纳验证
1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。
2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过动手操作拼图来验证结论的正确性和广泛性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育和数学文化熏陶。
(四)问题解决
让学生解决生活中的实际问题,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。
(五)课堂小结
主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。
(六)布置作业
习题19.2(1-5)
有兴趣的同学可以查找另外的证明方法,写出1-2种出来
四、 设计说明
1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的探索和研究,得出结论。这种一般化的思想方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。
3、关于练习的设计,除两个实际问题和课本习题以外,还让有兴趣的同学可以查找另外的证明方法,写出1-2种出来
4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学数学、用数学的意识是有很大的裨益的。
勾股定理说课稿 篇5
一、说教材分析:
(一)本节内容在全书和章节的地位
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:
1.【知识与能力目标】
⒈理解并掌握勾股定理的内容和证明,能灵活运用勾股定理及其计算;
⒉通过观察分析,大胆猜想,并且探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2.【过程与方法目标】
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并且体会数形结合和从特殊到一般的思想方法。
3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
【教学重点】勾股定理的证明与运用
【教学难点】用面积法等方法证明勾股定理
【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
【突破措施】:
⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。
二、说教法与学法分析
【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。
【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并且参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使得学生真正的成为学习的主人。
三、说教学过程设计
(一)创设情景
多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
问题的设计有一定的挑战性,目的是激发学生的.探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
(二)动手操作
⒈课件出示课本P99图19.2.1:
观察图中用阴影画出的三个正方形,你从中能得出什么结论?
学生可能会考虑到各种不同的思考方法,老师要给予肯定,并且要鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则 AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图 19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
⒊再问:当边长不为整数的直角三角形是否也是存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。
(三)归纳验证
【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整一堂课充分发挥学生的主体作用,真正获取知识,解决问题。
【验证】先后的三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也是有利于培养学生严谨、科学的学习态度。
(四)问题解决
⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。
⒉自学课本P101例1,然后完成P102练习。
(五)课堂小结
1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。
2.教师用多媒体介绍“勾股定理史话”
①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。
②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。
目的是对学生进行爱国主义教育,激励学生要奋发向上。
(六)布置作业
课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。
勾股定理说课稿 篇6
一、说教材
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
二、说教法和学法
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让同学们主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的.教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:如何证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发同学们的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习 强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导同学们对知识要点进行总结,梳理学习思路。分发自我反馈练习,同学们独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
勾股定理说课稿 篇7
一、勾股定理是我国古数学的一项伟大成就.勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面.教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用. 据此,制定教学目标如下:
1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解. 2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的.
3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美.
教学重点:勾股定理的应用. 教学难点:勾股定理的正确使用.
教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.
二.说教法和学法
1.以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程.
2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的.能力.
3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望.
三、教学程序本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用.
勾股定理说课稿 篇8
一、 教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的.认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
三、 教学过程设计
略
勾股定理说课稿 篇9
一、教材分析
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大,我们的教材在编写时注意培养大家的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并且掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、主要就是培养学生观察、比较、分析、推理的能力。
4、通过介绍我们中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的`民族自豪感和钻研精神。
教学重点:
勾股定理的证明和应用。
教学难点:
勾股定理的证明。
二、教法和学法
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5,小学数学教案《数学 - 勾股定理说课稿》。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:
怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习 强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
【勾股定理说课稿】相关文章:
有关勾股定理说课稿3篇11-18
关于勾股定理说课稿模板合集五篇01-03
勾股定理教案02-11
勾股定理的教学反思10-09
勾股定理教学反思03-27
数学勾股定理教案11-02
勾股定理的教学反思11-24
勾股定理教学反思(精选5篇)09-24
勾股定理的逆定理数学教学反思12-29